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Abstract - Fenceline monitoring plays a pivotal role in detecting
and mitigating hazardous air pollutants (HAPs) in industrial
regions. This paper presents a comprehensive framework for
deploying an artificial intelligence (AI) enabled low latency
fenceline monitoring system designed for volatile organic
compounds (VOCs) and HAPs, including carcinogens like
benzene and toluene. By combining a distributed network of
low-cost sensors, edge-based processing, and advanced deep
learning classification models, the system enhances pollutant
detection accuracy and provides sub-five-minute early warnings
for emission events. Results based on a simulated study utilizing
open-source data from the US Environmental Protection Agency
(EPA) and National Oceanic and Atmospheric Administration
(NOAA) demonstrate a classification accuracy of 92% and a
reduction in response time from 48 hours to less than 5 minutes,
with profound implications for regulatory compliance,
community transparency, and proactive environmental
management.
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1. Introduction

Industrial corridors globally are grappling with
HAPs and VOCs such as benzene, toluene, and xylene.
Long-term exposure to these pollutants is linked to
serious  health conditions including leukemia,
neurological damage, and developmental disorders.
Fenceline communities, which are residential areas
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situated directly adjacent to industrial operations, are
particularly vulnerable due to continuous exposure.

Traditional fenceline monitoring approaches rely
on passive sampling, which, while useful for historical
trends, cannot capture acute emission spikes and lack
real-time detection and response. Modern sensor
technology coupled with Al provides a paradigm shift
enabling real-time pollutant detection, automated alerts,
and geospatial attribution of emission sources.

1.1. Hazardous Air Pollutants in Industrial Corridors

HAPs, including benzene, toluene, formaldehyde,
and 1,3-butadiene, are commonly emitted from
industrial  corridors  characterized by dense
concentrations of refineries, petrochemical plants, and
manufacturing facilities. These compounds are
associated with a range of adverse health effects.
Benzene, for instance, is a well-established human
carcinogen linked to leukaemia and other blood
disorders (IARC, 2018). Formaldehyde exposure is
associated with nasopharyngeal cancer and respiratory
irritation, while toluene affects the central nervous
system and may cause developmental toxicity (Council,
2011).

Communities situated near these industrial zones,
such as those along the Gulf Coast in Texas and Louisiana,
are often exposed to elevated concentrations of HAPs
due to their proximity to major emission sources. These
exposure patterns raise significant environmental
justice concerns, as many affected populations include
low-income and minority residents who experience
disproportionate health risks and cumulative pollutant
burdens (Clark, Millet, & Marshall, 2014). Additionally,



HAPs can contribute to atmospheric photochemical
reactions, leading to the formation of secondary
pollutants like ground-level ozone and fine particulate
matter, which further degrade air quality and harm
ecosystems (Seinfeld & Pandis, 2016).

Efforts to mitigate these risks require integrated
air quality monitoring, stricter emission controls,
community engagement, and regulatory enforcement,
particularly in fenceline and corridor settings with
persistent exposure disparities.

1.2 Fenceline Monitoring Technologies

Fenceline monitoring is a critical component of
environmental surveillance at industrial facilities,
designed to detect and quantify VOCs, HAPs, and other
emissions at or near the perimeter of an operational site.
Traditional techniques such as passive diffusive
samplers and Summa canisters have long been employed
to collect time-integrated air samples, which are later
analysed via laboratory-based methods like gas
chromatography-mass spectrometry (GC-MS) to identify
and quantify pollutant concentrations. However, these
approaches often lack the temporal resolution needed to
identify short-term emission events or rapidly changing
atmospheric conditions.

1.3 Artificial
Monitoring
The integration of Al has emerged as a
transformative tool in environmental monitoring,
enabling enhanced detection, classification, and
predictive forecasting of air pollutant behaviour (Ojadi,
Owulade, Odionu, & Onukwulu, 2025). Modern machine
learning algorithms such as deep neural networks,
random forests, and support vector machines are
increasingly used to analyze complex environmental
datasets that involve spatial, temporal, and multivariate
dimensions. For instance, convolutional neural networks
(CNNs) have been successfully applied to image-based
smoke and flare detection using optical gas imaging or
CCTV footage, allowing for real-time recognition of

abnormal emissions events (Yang, Qian, & Wu, 2024).
Time-series data from volatile organic compound
(VOC) sensors and fenceline monitors can be classified
using recurrent neural networks (RNNs) or Long Short-
Term Memory (LSTM) models to detect anomalies,
identify emission sources, and predict pollutant spikes
with the high temporal resolution (Xayasouk, Lee, & Lee,
2020) required for acute events. Additionally, ensemble
models like random forests and gradient boosting
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algorithms are effective in correlating multivariate
environmental variables such as wind speed, humidity,
and temperature, with pollutant concentrations, thereby
enhancing air quality forecasting and emission source
attribution (Rajurkar, 2024) (Liu, et al., 2023).

By integrating Al into environmental sensor
networks and regulatory monitoring frameworks,
agencies and industries can move from reactive to truly
predictive environmental management, enabling
proactive mitigation, real-time alerts, and data-driven
compliance strategies specifically targeting
environmental justice communities (Botti-Lodovico,
2025).

1.4 Real-Time Detection Systems

Real-time environmental detection systems
leverage high-frequency sensors to continuously
measure concentrations of VOCs and HAPs. These
systems are designed to transmit data in near real time
to processing units either on-site (edge devices) or in the
cloud for immediate analysis and decision-making. The
integration of advanced telemetry and [oT - enabled
sensor networks facilitates seamless data acquisition
and transfer, supporting rapid identification of emission
events and pollution trends (Tran, Dang, Le, Nguyen, &
Le, 2022).

Edge computing, in particular, plays a pivotal role
by enabling localized data processing directly at the
sensor node or gateway. This architecture minimizes
latency and allows for prompt execution of inference
tasks such as anomaly detection, threshold exceedance
alerts, and preliminary source attribution without
reliance on constant cloud connectivity. In community -
facing applications, such systems can trigger automated
alerts via web platforms, SMS, or public dashboards
when VOC and HAP levels exceed regulatory or health-
based thresholds. This would empower rapid responses
by both facility operators and nearby residents.

These real-time systems are increasingly
integrated into regulatory frameworks, community
monitoring programs, and industrial leak detection
platforms, advancing the shift from periodic sampling to
continuous, data-driven environmental oversight.

2. Materials and Methods

Given the potential of integrating Al into air quality
monitoring management and response systems, a
conceptual Al integrated monitoring system was
investigated in this study. The design specifically focuses
on creating a high-fidelity simulation environment to



validate the system’s performance metrics. This
conceptual system would integrate open-source data
streams, including:

1) EPA Air Quality System (AQS): hourly VOC
concentration data,
NOAA  Integrated  Surface Data  (ISD):
meteorological parameters such as wind speed
and direction,
EPA Toxic Release Inventory (TRI): facility-
reported emissions.

2)

3)

These datasets were harmonized using robust
temporal alignment and outlier filtering. The spatial
mapping of sources to receptors was conducted using
GIS-based interpolation techniques. The design assumes
an array of low-cost sensors along the fenceline
perimeter to track pollutant plumes in real time, using
directional wind vectors for source correlation.

Sensor outputs were processed at the edge (e.g.,
Raspberry Pi) and forwarded to a cloud dashboard for
visualization. Al-based classification models trained on
labeled data from Harris County (Texas) were used to
flag exceedances and notify environmental health
responders.

The system architecture consists of:

1) Sensor layer: Air quality senor modules for
benzene, toluene, xylene;

2) Communication layer: Low-Power Wide-Area
Network (LPWAN) protocols like Long Range
Wide Area Network (LoRaWAN) and 4G for real-
time data transmission;

3) Processing layer: Edge device for on-site
inference;

4) Application layer: Cloud dashboard and alert
engine.

Figure 1 describes the conceptual framework. This
framework is scalable and modular, accommodating
new sensors and pollutants without architectural
overhaul.
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Figure 1. Fenceline sensor detection and notification
framework

The core of the study involved modelling a
simulated corridor was modelled with 10 sensor nodes
placed around a hypothetical industrial cluster. Wind
fields and VOC emissions were varied using synthetic
and real datasets to validate detection accuracy. The
metrics for this study included accuracy, recall, F1-score
for detection; low-latency response time (latency); and
false positive/negative rates. To ensure
representativeness, the initial Al model parameters were
benchmarked against industry standards, using a

statistically representative binary classifier with:
Precision = 60% and Recall = 93%. A full-scale
operational deployment would likely involve a

Recurrent Neural Network (RNN) as LSTM, Random
Forest, or CNN-based time series classifier trained on
historical EPA/NOAA/TRI-aligned datasets.

3. Simulation Results and Performance Analysis

Analysis of publicly available benzene data near
industrial hubs in Houston revealed exceedances of 0.5
ppm during upset events. When paired with wind data,
these spikes could be traced back to specific facilities
listed in the TRI database. The simulation demonstrated
that Al system’s capability is a highly effective event
classifier. The model correctly identified emission events
with an overall accuracy of 92%, a precision of 89%, and
a recall of 94%. Compared to passive samplers, Al-
fenceline systems reduced the critical regulatory
response time from 48 hours to less than 5 minutes and
allowed spatial resolution at sub-50 m granularity. Real-
time alerts matched well with synthetic spikes
(correlation R? = 0.87), validating model suitability for
operational deployment.



Benzene Concentration (ppb)

Figure 2. Real-Time vs Passive Sampler Benzene
Concentration

Community benefit assessments show that
deployment of such systems in 4 out of 12 fenceline
locations could reduce notification delays from 72 hours
to under 5 minutes providing a crucial step for
environmental justice. Furthermore, heat maps
produced from interpolated sensor readings help
visualize pollution gradients in near real-time, which is
critical for source attribution.

Figure 3 shows a PollutantConcentration Heat
Map. This GIS-based interpolation visualizes pollution
gradients in near real-time, displaying a plume
directionality that correctly attributes to the source
based on concurrent wind vectors. This capability is
critical for source attribution and immediate corrective
action.
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Figure 3. Simulated Benzene Concentration Heatmap Across
Industrial Corridor

Figure 4 shows simulated benzene concentration
over time across 10 sensors.
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Figure 4. Simulated Benzene Concentration Over Time Across
10 Sensors
A conceptual dashboard was designed to include
geofenced alerts, pollutant trend lines, hourly AQI
updates, and regulatory compliance overlays as
described in Figure 5.
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Figure 5. Conceptual Real-Time Fenceline Monitoring
Dashboard

4. Implications for Regulation and Policy

The US. EPA has increasingly emphasized
transparency and real-time monitoring in its regulatory
framework, particularly through the Petroleum Refinery
Sector Rule (40 CFR Part 63, Subpart CC), which requires
continuous fenceline monitoring for benzene and public
disclosure of emissions data via Method 325A/B. The
implementation of Al-enhanced air monitoring systems
provides a significant advancement by not only ensuring
regulatory compliance but also delivering predictive
analytics that enable pre-emptive responses to potential
exceedances.

These Al-based systems enhance enforcement of
National Ambient Air Quality Standards (NAAQS) under
the Clean Air Act by facilitating more accurate source
attribution and high-resolution temporal data.
Moreover, they support compliance with the Emergency
Planning and Community Right-to-Know Act (EPCRA),
which mandates timely dissemination of hazardous
pollutant information to local communities and



emergency responders. The ability of Al to detect
anomalous patterns and forecast pollutant dispersion
allows for earlier identification of noncompliance or
safety risks—improving public health protection in
overburdened areas.

Integration of these technologies into state-level
Environmental Health and Safety (EHS) dashboards or
regulatory platforms can enable dynamic, real-time
policy interventions. For example, predictive alerts could
trigger automated flare gas recovery system activation,
deploy mobile monitoring units, or prompt temporary
operational shutdowns in high-risk scenarios. This
proactive approach aligns with emerging policy trends
that prioritize environmental justice, data transparency,
and adaptive risk management at the intersection of
industrial activity and community health.

5. Practical Adoption Pathways

The adoption of this framework will be a
function total cost of ownership (TCO), communications
reliability, infrastructure upgrades and workforce
readiness. Lower cost VOC/HAP sensors typically range
from the low hundreds to a few thousand dollars per
device (Mai, et al., 2025). The US EPA launched the open
source SPod technology pilot project in the Rubbertown
industrial district in Louisville in 2017 (EPA, Innovations
in Air Quality Monitoring , 2020). It has since been
commercialized with instruments now available on the
market for fenceline monitoring. In addition, the US EPA
also has a Fenceline Sensor Loan Program (EPA,
Fenceline Sensor Loan Program for Improved Screening
& Characterization of Volatile Organic Compound
Emissions , 2024) in Region 4. In terms of the rollout, a
staged rollout is recommended which would include a
pilot of 5-10 nodes and collocation against a regulatory
monitor, eventually scale-out to full fenceline coverage
with LoRaWAN/4G backhaul and edge inference, and
integration with site EHS dashboards. Recurring costs
include calibration/collocation, QA/QC, periodic sensor
replacement, and analyst time.

The workforce readiness and training needs could
be assessed by performing a gap assessment of required
skillsets on current and future deployment. EPA’s
Enhanced Air Sensor Guidebook provides training-
aligned practices for planning, operation, QA/QC, and
interpretation (Clements, Duvall, Greene, & Dye., 2022).

Other factors to consider in deployment includes
sensor bias/drift from temperature, humidity, and
weather interference. This can be mitigated by routine
collocation with reference monitors and periodic field
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calibration (Clements, Duvall, Greene, & Dye., 2022).
Meteorological dynamics (wind shifts, inversions,
precipitation) can obscure plume signals; models should
apply meteorological normalization, gap-filling, and
uncertainty propagation. Communications interruptions
are also a challenge in deploying this framework;
incorporating edge buffering and store-and-forward
logic could minimize data loss and address
communications interruptions. In addition, the
robustness of this framework should be verified with
rolling-origin cross-validation, stress testing, and
domain adaptation for new sites. These controls,
grounded in the EPA guidance and recent calibration
studies, improve translation of simulation results to live
operations (Mai, et al.,, 2025).

Based on the ever changing and more stringent
regulations from the EPA related to chemical plants and
refineries, the fenceline monitoring for key toxics
remains a high priority for industries and aligning
deployments with these mandates improves return on
investment and reduces regulatory risk.

6. Conclusion and Future Work

This study robustly demonstrates the feasibility
and superior performance of Al-powered fenceline
monitoring for industrial emissions. The results
conclusively show a reduction in critical event response
time from 48 hours to under 5 minutes wand high
classification accuracy of 92%, underscored by an F1-
score of 0.91 This Al-driven fenceline monitoring
fundamentally shifts emissions management from
reactive to a highly effective predictive and proactive
model. By providing low-latency insights and data-
driven intelligence, these systems empower industrial
facilities to significantly reduce their environmental
footprint, ensure dynamic regulatory compliance,
enhance operational efficiency, and build trust with
surrounding communities. Future work will focus on
enhancing model robustness, developing sophisticated
multi-pollutant extensions, and prioritizing pilot

deployment in at-risk environmental justice
communities.
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