Volume13, Year 2025 Journal ISSN: 1929-2732 DOI: 10.11159/ijepr25.008

An AI-Driven Framework for Real-Time Fenceline Monitoring to Proactively Detect and Mitigate Hazardous Air Pollutants (HAPs)

Prashant Rajurkar¹

¹HF Sinclair, Department of Environment 2323 Victory Ave, Dallas, TX USA prashant.rajurkar@hfsinclair.com

Abstract - Fenceline monitoring plays a pivotal role in detecting and mitigating hazardous air pollutants (HAPs) in industrial regions. This paper presents a comprehensive framework for deploying an artificial intelligence (AI) enabled low latency fenceline monitoring system designed for volatile organic compounds (VOCs) and HAPs, including carcinogens like benzene and toluene. By combining a distributed network of low-cost sensors, edge-based processing, and advanced deep learning classification models, the system enhances pollutant detection accuracy and provides sub-five-minute early warnings for emission events. Results based on a simulated study utilizing open-source data from the US Environmental Protection Agency (EPA) and National Oceanic and Atmospheric Administration (NOAA) demonstrate a classification accuracy of 92% and a reduction in response time from 48 hours to less than 5 minutes, with profound implications for regulatory compliance, community transparency, and proactive environmental management.

Keywords: Fenceline monitoring, VOCs, HAPs, real-time air pollutant detection, AI

© Copyright 2025 Authors - This is an Open Access article published under the Creative Commons Attribution License terms (http://creativecommons.org/licenses/by/3.0). Unrestricted use, distribution, and reproduction in any medium are permitted, provided the original work is properly cited.

1. Introduction

Industrial corridors globally are grappling with HAPs and VOCs such as benzene, toluene, and xylene. Long-term exposure to these pollutants is linked to serious health conditions including leukemia, neurological damage, and developmental disorders. Fenceline communities, which are residential areas

situated directly adjacent to industrial operations, are particularly vulnerable due to continuous exposure.

Traditional fenceline monitoring approaches rely on passive sampling, which, while useful for historical trends, cannot capture acute emission spikes and lack real-time detection and response. Modern sensor technology coupled with AI provides a paradigm shift enabling real-time pollutant detection, automated alerts, and geospatial attribution of emission sources.

1.1. Hazardous Air Pollutants in Industrial Corridors

HAPs, including benzene, toluene, formaldehyde, and 1,3-butadiene, are commonly emitted from industrial corridors characterized by concentrations of refineries, petrochemical plants, and manufacturing facilities. These compounds associated with a range of adverse health effects. Benzene, for instance, is a well-established human carcinogen linked to leukaemia and other blood disorders (IARC, 2018). Formaldehyde exposure is associated with nasopharyngeal cancer and respiratory irritation, while toluene affects the central nervous system and may cause developmental toxicity (Council, 2011).

Communities situated near these industrial zones, such as those along the Gulf Coast in Texas and Louisiana, are often exposed to elevated concentrations of HAPs due to their proximity to major emission sources. These exposure patterns raise significant environmental justice concerns, as many affected populations include low-income and minority residents who experience disproportionate health risks and cumulative pollutant burdens (Clark, Millet, & Marshall, 2014). Additionally,

Date Received: 2025-06-11 Date Revised: 2025-09-27 Date Accepted: 2025-10-10 Date Published: 2025-10-17 HAPs can contribute to atmospheric photochemical reactions, leading to the formation of secondary pollutants like ground-level ozone and fine particulate matter, which further degrade air quality and harm ecosystems (Seinfeld & Pandis, 2016).

Efforts to mitigate these risks require integrated air quality monitoring, stricter emission controls, community engagement, and regulatory enforcement, particularly in fenceline and corridor settings with persistent exposure disparities.

1.2 Fenceline Monitoring Technologies

Fenceline monitoring is a critical component of environmental surveillance at industrial facilities, designed to detect and quantify VOCs, HAPs, and other emissions at or near the perimeter of an operational site. Traditional techniques such as passive diffusive samplers and Summa canisters have long been employed to collect time-integrated air samples, which are later analysed via laboratory-based methods like gas chromatography-mass spectrometry (GC-MS) to identify and quantify pollutant concentrations. However, these approaches often lack the temporal resolution needed to identify short-term emission events or rapidly changing atmospheric conditions.

1.3 Artificial Intelligence in Environmental Monitoring

The integration of AI has emerged as a transformative tool in environmental monitoring, enabling enhanced detection, classification, and predictive forecasting of air pollutant behaviour (Ojadi, Owulade, Odionu, & Onukwulu, 2025). Modern machine learning algorithms such as deep neural networks, random forests, and support vector machines are increasingly used to analyze complex environmental datasets that involve spatial, temporal, and multivariate dimensions. For instance, convolutional neural networks (CNNs) have been successfully applied to image-based smoke and flare detection using optical gas imaging or CCTV footage, allowing for real-time recognition of abnormal emissions events (Yang, Qian, & Wu, 2024).

Time-series data from volatile organic compound (VOC) sensors and fenceline monitors can be classified using recurrent neural networks (RNNs) or Long Short-Term Memory (LSTM) models to detect anomalies, identify emission sources, and predict pollutant spikes with the high temporal resolution (Xayasouk, Lee, & Lee, 2020) required for acute events. Additionally, ensemble models like random forests and gradient boosting

algorithms are effective in correlating multivariate environmental variables such as wind speed, humidity, and temperature, with pollutant concentrations, thereby enhancing air quality forecasting and emission source attribution (Rajurkar, 2024) (Liu, et al., 2023).

By integrating AI into environmental sensor networks and regulatory monitoring frameworks, agencies and industries can move from reactive to truly predictive environmental management, enabling proactive mitigation, real-time alerts, and data-driven compliance strategies specifically targeting environmental justice communities (Botti-Lodovico, 2025).

1.4 Real-Time Detection Systems

Real-time environmental detection systems leverage high-frequency sensors to continuously measure concentrations of VOCs and HAPs. These systems are designed to transmit data in near real time to processing units either on-site (edge devices) or in the cloud for immediate analysis and decision-making. The integration of advanced telemetry and IoT – enabled sensor networks facilitates seamless data acquisition and transfer, supporting rapid identification of emission events and pollution trends (Tran, Dang, Le, Nguyen, & Le, 2022).

Edge computing, in particular, plays a pivotal role by enabling localized data processing directly at the sensor node or gateway. This architecture minimizes latency and allows for prompt execution of inference tasks such as anomaly detection, threshold exceedance alerts, and preliminary source attribution without reliance on constant cloud connectivity. In community – facing applications, such systems can trigger automated alerts via web platforms, SMS, or public dashboards when VOC and HAP levels exceed regulatory or health-based thresholds. This would empower rapid responses by both facility operators and nearby residents.

These real-time systems are increasingly integrated into regulatory frameworks, community monitoring programs, and industrial leak detection platforms, advancing the shift from periodic sampling to continuous, data-driven environmental oversight.

2. Materials and Methods

Given the potential of integrating AI into air quality monitoring management and response systems, a conceptual AI integrated monitoring system was investigated in this study. The design specifically focuses on creating a high-fidelity simulation environment to

validate the system's performance metrics. This conceptual system would integrate open-source data streams, including:

- 1) EPA Air Quality System (AQS): hourly VOC concentration data,
- 2) NOAA Integrated Surface Data (ISD): meteorological parameters such as wind speed and direction,
- 3) EPA Toxic Release Inventory (TRI): facility-reported emissions.

These datasets were harmonized using robust temporal alignment and outlier filtering. The spatial mapping of sources to receptors was conducted using GIS-based interpolation techniques. The design assumes an array of low-cost sensors along the fenceline perimeter to track pollutant plumes in real time, using directional wind vectors for source correlation.

Sensor outputs were processed at the edge (e.g., Raspberry Pi) and forwarded to a cloud dashboard for visualization. AI-based classification models trained on labeled data from Harris County (Texas) were used to flag exceedances and notify environmental health responders.

The system architecture consists of:

- 1) Sensor layer: Air quality senor modules for benzene, toluene, xylene;
- 2) Communication layer: Low-Power Wide-Area Network (LPWAN) protocols like Long Range Wide Area Network (LoRaWAN) and 4G for real-time data transmission;
- 3) Processing layer: Edge device for on-site inference;
- 4) Application layer: Cloud dashboard and alert engine.

Figure 1 describes the conceptual framework. This framework is scalable and modular, accommodating new sensors and pollutants without architectural overhaul.

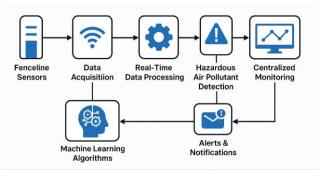


Figure 1. Fenceline sensor detection and notification framework

The core of the study involved modelling a simulated corridor was modelled with 10 sensor nodes placed around a hypothetical industrial cluster. Wind fields and VOC emissions were varied using synthetic and real datasets to validate detection accuracy. The metrics for this study included accuracy, recall, F1-score for detection; low-latency response time (latency); and positive/negative false rates. ensure representativeness, the initial AI model parameters were benchmarked against industry standards, using a statistically representative binary classifier with: Precision ≈ 60% and Recall ≈ 93%. A full-scale operational deployment would likely involve a Recurrent Neural Network (RNN) as LSTM, Random Forest, or CNN-based time series classifier trained on historical EPA/NOAA/TRI-aligned datasets.

3. Simulation Results and Performance Analysis

Analysis of publicly available benzene data near industrial hubs in Houston revealed exceedances of 0.5 ppm during upset events. When paired with wind data, these spikes could be traced back to specific facilities listed in the TRI database. The simulation demonstrated that AI system's capability is a highly effective event classifier. The model correctly identified emission events with an overall accuracy of 92%, a precision of 89%, and a recall of 94%. Compared to passive samplers, AI-fenceline systems reduced the critical regulatory response time from 48 hours to less than 5 minutes and allowed spatial resolution at sub-50 m granularity. Real-time alerts matched well with synthetic spikes (correlation $R^2 = 0.87$), validating model suitability for operational deployment.



Figure 2. Real-Time vs Passive Sampler Benzene Concentration

Community benefit assessments show that deployment of such systems in 4 out of 12 fenceline locations could reduce notification delays from 72 hours to under 5 minutes providing a crucial step for environmental justice. Furthermore, heat maps produced from interpolated sensor readings help visualize pollution gradients in near real-time, which is critical for source attribution.

Figure 3 shows a PollutantConcentration Heat Map. This GIS-based interpolation visualizes pollution gradients in near real-time, displaying a plume directionality that correctly attributes to the source based on concurrent wind vectors. This capability is critical for source attribution and immediate corrective action.

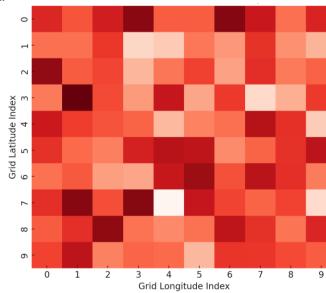


Figure 3. Simulated Benzene Concentration Heatmap Across Industrial Corridor

Figure 4 shows simulated benzene concentration over time across 10 sensors.

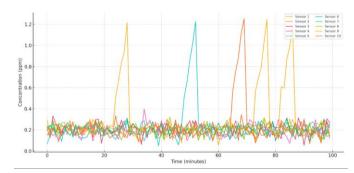


Figure 4. Simulated Benzene Concentration Over Time Across 10 Sensors

A conceptual dashboard was designed to include geofenced alerts, pollutant trend lines, hourly AQI updates, and regulatory compliance overlays as described in Figure 5.

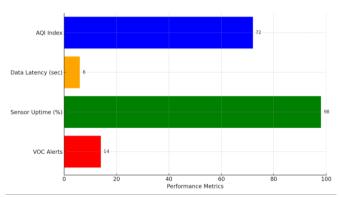


Figure 5. Conceptual Real-Time Fenceline Monitoring Dashboard

4. Implications for Regulation and Policy

The U.S. EPA has increasingly emphasized transparency and real-time monitoring in its regulatory framework, particularly through the Petroleum Refinery Sector Rule (40 CFR Part 63, Subpart CC), which requires continuous fenceline monitoring for benzene and public disclosure of emissions data via Method 325A/B. The implementation of AI-enhanced air monitoring systems provides a significant advancement by not only ensuring regulatory compliance but also delivering predictive analytics that enable pre-emptive responses to potential exceedances.

These AI-based systems enhance enforcement of National Ambient Air Quality Standards (NAAQS) under the Clean Air Act by facilitating more accurate source attribution and high-resolution temporal data. Moreover, they support compliance with the Emergency Planning and Community Right-to-Know Act (EPCRA), which mandates timely dissemination of hazardous pollutant information to local communities and

emergency responders. The ability of AI to detect anomalous patterns and forecast pollutant dispersion allows for earlier identification of noncompliance or safety risks—improving public health protection in overburdened areas.

Integration of these technologies into state-level Environmental Health and Safety (EHS) dashboards or regulatory platforms can enable dynamic, real-time policy interventions. For example, predictive alerts could trigger automated flare gas recovery system activation, deploy mobile monitoring units, or prompt temporary operational shutdowns in high-risk scenarios. This proactive approach aligns with emerging policy trends that prioritize environmental justice, data transparency, and adaptive risk management at the intersection of industrial activity and community health.

5. Practical Adoption Pathways

The adoption of this framework will be a function total cost of ownership (TCO), communications reliability, infrastructure upgrades and workforce readiness. Lower cost VOC/HAP sensors typically range from the low hundreds to a few thousand dollars per device (Mai, et al., 2025). The US EPA launched the open source SPod technology pilot project in the Rubbertown industrial district in Louisville in 2017 (EPA, Innovations in Air Quality Monitoring , 2020). It has since been commercialized with instruments now available on the market for fenceline monitoring. In addition, the US EPA also has a Fenceline Sensor Loan Program (EPA, Fenceline Sensor Loan Program for Improved Screening & Characterization of Volatile Organic Compound Emissions, 2024) in Region 4. In terms of the rollout, a staged rollout is recommended which would include a pilot of 5–10 nodes and collocation against a regulatory monitor, eventually scale-out to full fenceline coverage with LoRaWAN/4G backhaul and edge inference, and integration with site EHS dashboards. Recurring costs include calibration/collocation, QA/QC, periodic sensor replacement, and analyst time.

The workforce readiness and training needs could be assessed by performing a gap assessment of required skillsets on current and future deployment. EPA's Enhanced Air Sensor Guidebook provides training-aligned practices for planning, operation, QA/QC, and interpretation (Clements, Duvall, Greene, & Dye., 2022).

Other factors to consider in deployment includes sensor bias/drift from temperature, humidity, and weather interference. This can be mitigated by routine collocation with reference monitors and periodic field

calibration (Clements, Duvall, Greene, & Dye., 2022). Meteorological dynamics (wind shifts, inversions, precipitation) can obscure plume signals; models should apply meteorological normalization, gap-filling, and uncertainty propagation. Communications interruptions are also a challenge in deploying this framework; incorporating edge buffering and store-and-forward minimize data logic could loss and address addition. communications interruptions. In robustness of this framework should be verified with rolling-origin cross-validation, stress testing, and domain adaptation for new sites. These controls, grounded in the EPA guidance and recent calibration studies, improve translation of simulation results to live operations (Mai, et al., 2025).

Based on the ever changing and more stringent regulations from the EPA related to chemical plants and refineries, the fenceline monitoring for key toxics remains a high priority for industries and aligning deployments with these mandates improves return on investment and reduces regulatory risk.

6. Conclusion and Future Work

This study robustly demonstrates the feasibility and superior performance of AI-powered fenceline monitoring for industrial emissions. The results conclusively show a reduction in critical event response time from 48 hours to under 5 minutes wand high classification accuracy of 92%, underscored by an F1score of 0.91 This AI-driven fenceline monitoring fundamentally shifts emissions management from reactive to a highly effective predictive and proactive model. By providing low-latency insights and datadriven intelligence, these systems empower industrial facilities to significantly reduce their environmental footprint, ensure dynamic regulatory compliance, enhance operational efficiency, and build trust with surrounding communities. Future work will focus on enhancing model robustness, developing sophisticated multi-pollutant extensions, and prioritizing pilot deployment in at-risk environmental justice communities.

References

[1] Botti-Lodovico, Y. (2025, August 5). Community Storytelling for Environmental Justice: How Data and AI Can Help. *Medium*.

- [2] Clark, L. P., Millet, D. B., & Marshall, J. D. (2014). National Patterns in Environmental Injustice and Inequality: Outdoor NO2 Air Pollution in the United States. *PLOS One*, 9(4).
- [3] Clements, A., Duvall, R., Greene, D., & Dye., T. (2022). *The Enhanced Air Sensor Guidebook*. Washington, DC: US EPA.
- [4] Council, N. R. (2011). Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde. Washington DC: US EPA.
- [5] EPA, U. (2020). *Innovations in Air Quality Monitoring*. US EPA.
- [6] EPA, U. (2024). Fenceline Sensor Loan Program for Improved Screening & Characterization of Volatile Organic Compound Emissions . US EPA.
- [7] IARC. (2018). Benzene: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans . IARC .
- [8] Liu, R., Pang, L., Yang, Y., Gao, Y., Gao, B., Liu, F., & Wang, L. (2023). Air Quality— Meteorology Correlation Modeling Using Random Forest and Neural Network. Sustainability 2023, 15(5), 4531.
- [9] Mai, C., Wang, Z., Chen, L., Huang, Y., Li, M., Shirazi, A., . . . Zhou, J. L. (2025). Field-based calibration and operation of low-cost sensors for particulate matter by linear and nonlinear methods. *Atmospheric Pollution Research*, 16(12).
- [10] Ojadi, J. O., Owulade, O. A., Odionu, C. S., & Onukwulu, E. C. (2025). Deep Learning Models for Predicting and Mitigating Environmental Impact of Industrial Processes in Real-Time. *International Journal of Scientific Research in Science, Engineering and Technology*, 12(2).
- [11] Rajurkar, P. (2024). Integrating AI in Air Quality Control Systems in Petrochemical and Chemical Manufacturing Facilities. *International Journal of Innovative Research of Science, Engineering and Technology, 13*(10), 17869 17873.
- [12] Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air

- Pollution to Climate Change. John Wiley & Sonc Inc.
- [13] Tran, Q. A., Dang, Q. H., Le, T., Nguyen, H. T., & Le, T. D. (2022). Air Quality Monitoring and Forecasting Systemusing IoT and Machine Learning Techniques. 6th International Conference on Green Technology and Sustainable Development (GTSD). Nha Trang, Vietnam.
- [14] Xayasouk, T., Lee, H., & Lee, G. (2020). Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models. *Sustainability* 2020, 12(6), 2570.
- [15] Yang, M., Qian, S., & Wu, X. (2024). Real-time fire and smoke detection with transfer learning based on cloud-edge collaborative architecture. *IET Image Processing*, 18(12), 3716-3728.