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Abstract - Fenceline monitoring plays a pivotal role in detecting 
and mitigating hazardous air pollutants (HAPs) in industrial 
regions. This paper presents a comprehensive framework for 
deploying an artificial intelligence (AI) enabled low latency 
fenceline monitoring system designed for volatile organic 
compounds (VOCs) and HAPs, including carcinogens like 
benzene and toluene. By combining a distributed network of 
low-cost sensors, edge-based processing, and advanced deep 
learning classification models, the system enhances pollutant 
detection accuracy and provides sub-five-minute early warnings 
for emission events. Results based on a simulated study utilizing 
open-source data from the US Environmental Protection Agency 
(EPA) and National Oceanic and Atmospheric Administration 
(NOAA) demonstrate a classification accuracy of 92% and a 
reduction in response time from 48 hours to less than 5 minutes, 
with profound implications for regulatory compliance, 
community transparency, and proactive environmental 
management.  
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1. Introduction 
Industrial corridors globally are grappling with 

HAPs and VOCs such as benzene, toluene, and xylene. 
Long-term exposure to these pollutants is linked to 
serious health conditions including leukemia, 
neurological damage, and developmental disorders. 
Fenceline communities, which are residential areas 

situated directly adjacent to industrial operations, are 
particularly vulnerable due to continuous exposure. 

Traditional fenceline monitoring approaches rely 
on passive sampling, which, while useful for historical 
trends, cannot capture acute emission spikes and lack 
real-time detection and response. Modern sensor 
technology coupled with AI provides a paradigm shift 
enabling real-time pollutant detection, automated alerts, 
and geospatial attribution of emission sources. 

 
1.1. Hazardous Air Pollutants in Industrial Corridors 

HAPs, including benzene, toluene, formaldehyde, 
and 1,3-butadiene, are commonly emitted from 
industrial corridors characterized by dense 
concentrations of refineries, petrochemical plants, and 
manufacturing facilities. These compounds are 
associated with a range of adverse health effects. 
Benzene, for instance, is a well-established human 
carcinogen linked to leukaemia and other blood 
disorders (IARC, 2018). Formaldehyde exposure is 
associated with nasopharyngeal cancer and respiratory 
irritation, while toluene affects the central nervous 
system and may cause developmental toxicity (Council, 
2011). 

Communities situated near these industrial zones, 
such as those along the Gulf Coast in Texas and Louisiana, 
are often exposed to elevated concentrations of HAPs 
due to their proximity to major emission sources. These 
exposure patterns raise significant environmental 
justice concerns, as many affected populations include 
low-income and minority residents who experience 
disproportionate health risks and cumulative pollutant 
burdens (Clark, Millet, & Marshall, 2014). Additionally, 
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HAPs can contribute to atmospheric photochemical 
reactions, leading to the formation of secondary 
pollutants like ground-level ozone and fine particulate 
matter, which further degrade air quality and harm 
ecosystems (Seinfeld & Pandis, 2016). 

Efforts to mitigate these risks require integrated 
air quality monitoring, stricter emission controls, 
community engagement, and regulatory enforcement, 
particularly in fenceline and corridor settings with 
persistent exposure disparities. 

 
1.2 Fenceline Monitoring Technologies 

Fenceline monitoring is a critical component of 
environmental surveillance at industrial facilities, 
designed to detect and quantify VOCs, HAPs, and other 
emissions at or near the perimeter of an operational site. 
Traditional techniques such as passive diffusive 
samplers and Summa canisters have long been employed 
to collect time-integrated air samples, which are later 
analysed via laboratory-based methods like gas 
chromatography-mass spectrometry (GC-MS) to identify 
and quantify pollutant concentrations. However, these 
approaches often lack the temporal resolution needed to 
identify short-term emission events or rapidly changing 
atmospheric conditions.  

 
1.3 Artificial Intelligence in Environmental 

Monitoring 
The integration of AI has emerged as a 

transformative tool in environmental monitoring, 
enabling enhanced detection, classification, and 
predictive forecasting of air pollutant behaviour (Ojadi, 
Owulade, Odionu, & Onukwulu, 2025). Modern machine 
learning algorithms such as deep neural networks, 
random forests, and support vector machines are 
increasingly used to analyze complex environmental 
datasets that involve spatial, temporal, and multivariate 
dimensions. For instance, convolutional neural networks 
(CNNs) have been successfully applied to image-based 
smoke and flare detection using optical gas imaging or 
CCTV footage, allowing for real-time recognition of 
abnormal emissions events (Yang, Qian, & Wu, 2024). 

Time-series data from volatile organic compound 
(VOC) sensors and fenceline monitors can be classified 
using recurrent neural networks (RNNs) or Long Short-
Term Memory (LSTM) models to detect anomalies, 
identify emission sources, and predict pollutant spikes 
with the high temporal resolution (Xayasouk, Lee, & Lee, 
2020) required for acute events. Additionally, ensemble 
models like random forests and gradient boosting 

algorithms are effective in correlating multivariate 
environmental variables such as wind speed, humidity, 
and temperature, with pollutant concentrations, thereby 
enhancing air quality forecasting and emission source 
attribution (Rajurkar, 2024) (Liu, et al., 2023). 

By integrating AI into environmental sensor 
networks and regulatory monitoring frameworks, 
agencies and industries can move from reactive to truly 
predictive environmental management, enabling 
proactive mitigation, real-time alerts, and data-driven 
compliance strategies specifically targeting 
environmental justice communities (Botti-Lodovico, 
2025).  

 
1.4 Real-Time Detection Systems 

Real-time environmental detection systems 
leverage high-frequency sensors to continuously 
measure concentrations of VOCs and HAPs. These 
systems are designed to transmit data in near real time 
to processing units either on-site (edge devices) or in the 
cloud for immediate analysis and decision-making. The 
integration of advanced telemetry and IoT – enabled 
sensor networks facilitates seamless data acquisition 
and transfer, supporting rapid identification of emission 
events and pollution trends (Tran, Dang, Le, Nguyen, & 
Le, 2022). 

Edge computing, in particular, plays a pivotal role 
by enabling localized data processing directly at the 
sensor node or gateway. This architecture minimizes 
latency and allows for prompt execution of inference 
tasks such as anomaly detection, threshold exceedance 
alerts, and preliminary source attribution without 
reliance on constant cloud connectivity. In community – 
facing applications, such systems can trigger automated 
alerts via web platforms, SMS, or public dashboards 
when VOC and HAP levels exceed regulatory or health-
based thresholds. This would empower rapid responses 
by both facility operators and nearby residents. 

These real-time systems are increasingly 
integrated into regulatory frameworks, community 
monitoring programs, and industrial leak detection 
platforms, advancing the shift from periodic sampling to 
continuous, data-driven environmental oversight. 

 
2. Materials and Methods 

Given the potential of integrating AI into air quality 
monitoring management and response systems, a 
conceptual AI integrated monitoring system was 
investigated in this study. The design specifically focuses 
on creating a high-fidelity simulation environment to 
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validate the system’s performance metrics. This 
conceptual system would integrate open-source data 
streams, including: 

1) EPA Air Quality System (AQS): hourly VOC 
concentration data, 

2) NOAA Integrated Surface Data (ISD): 
meteorological parameters such as wind speed 
and direction, 

3) EPA Toxic Release Inventory (TRI): facility-
reported emissions. 
 
These datasets were harmonized using robust 

temporal alignment and outlier filtering. The spatial 
mapping of sources to receptors was conducted using 
GIS-based interpolation techniques. The design assumes 
an array of low-cost sensors along the fenceline 
perimeter to track pollutant plumes in real time, using 
directional wind vectors for source correlation. 

Sensor outputs were processed at the edge (e.g., 
Raspberry Pi) and forwarded to a cloud dashboard for 
visualization. AI-based classification models trained on 
labeled data from Harris County (Texas) were used to 
flag exceedances and notify environmental health 
responders.  

The system architecture consists of: 
1) Sensor layer: Air quality senor modules for 

benzene, toluene, xylene; 
2) Communication layer: Low-Power Wide-Area 

Network (LPWAN) protocols like Long Range 
Wide Area Network (LoRaWAN) and 4G for real-
time data transmission; 

3) Processing layer: Edge device for on-site 
inference; 

4) Application layer: Cloud dashboard and alert 
engine. 
 
Figure 1 describes the conceptual framework. This 

framework is scalable and modular, accommodating 
new sensors and pollutants without architectural 
overhaul.  

 

 
Figure 1. Fenceline sensor detection and notification 

framework 

The core of the study involved modelling a 
simulated corridor was modelled with 10 sensor nodes 
placed around a hypothetical industrial cluster. Wind 
fields and VOC emissions were varied using synthetic 
and real datasets to validate detection accuracy. The 
metrics for this study included accuracy, recall, F1-score 
for detection; low-latency response time (latency); and 
false positive/negative rates. To ensure 
representativeness, the initial AI model parameters were 
benchmarked against industry standards, using a 
statistically representative binary classifier with: 
Precision ≈ 60% and Recall ≈ 93%. A full-scale 
operational deployment would likely involve a 
Recurrent Neural Network (RNN) as LSTM, Random 
Forest, or CNN-based time series classifier trained on 
historical EPA/NOAA/TRI-aligned datasets. 

 
3. Simulation Results and Performance Analysis 

Analysis of publicly available benzene data near 
industrial hubs in Houston revealed exceedances of 0.5 
ppm during upset events. When paired with wind data, 
these spikes could be traced back to specific facilities 
listed in the TRI database. The simulation demonstrated 
that AI system’s capability is a highly effective event 
classifier. The model correctly identified emission events 
with an overall accuracy of 92%, a precision of 89%, and 
a recall of 94%. Compared to passive samplers, AI-
fenceline systems reduced the critical regulatory 
response time from 48 hours to less than 5 minutes and 
allowed spatial resolution at sub-50 m granularity. Real-
time alerts matched well with synthetic spikes 
(correlation R² = 0.87), validating model suitability for 
operational deployment.  
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Figure 2. Real-Time vs Passive Sampler Benzene 
Concentration 

 
Community benefit assessments show that 

deployment of such systems in 4 out of 12 fenceline 
locations could reduce notification delays from 72 hours 
to under 5 minutes providing a crucial step for 
environmental justice. Furthermore, heat maps 
produced from interpolated sensor readings help 
visualize pollution gradients in near real-time, which is 
critical for source attribution. 

Figure 3 shows a PollutantConcentration Heat 
Map. This GIS-based interpolation visualizes pollution 
gradients in near real-time, displaying a plume 
directionality that correctly attributes to the source 
based on concurrent wind vectors. This capability is 
critical for source attribution and immediate corrective 
action. 

 
Figure 3. Simulated Benzene Concentration Heatmap Across 

Industrial Corridor 

 
Figure 4 shows simulated benzene concentration 

over time across 10 sensors. 

 
 
 
 
 
 
 
 
 
 

Figure 4. Simulated Benzene Concentration Over Time Across 
10 Sensors 

A conceptual dashboard was designed to include 
geofenced alerts, pollutant trend lines, hourly AQI 
updates, and regulatory compliance overlays as 
described in Figure 5.  

 

 
Figure 5. Conceptual Real-Time Fenceline Monitoring 

Dashboard 

 
4. Implications for Regulation and Policy 

The U.S. EPA has increasingly emphasized 
transparency and real-time monitoring in its regulatory 
framework, particularly through the Petroleum Refinery 
Sector Rule (40 CFR Part 63, Subpart CC), which requires 
continuous fenceline monitoring for benzene and public 
disclosure of emissions data via Method 325A/B. The 
implementation of AI-enhanced air monitoring systems 
provides a significant advancement by not only ensuring 
regulatory compliance but also delivering predictive 
analytics that enable pre-emptive responses to potential 
exceedances. 

These AI-based systems enhance enforcement of 
National Ambient Air Quality Standards (NAAQS) under 
the Clean Air Act by facilitating more accurate source 
attribution and high-resolution temporal data. 
Moreover, they support compliance with the Emergency 
Planning and Community Right-to-Know Act (EPCRA), 
which mandates timely dissemination of hazardous 
pollutant information to local communities and 
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emergency responders. The ability of AI to detect 
anomalous patterns and forecast pollutant dispersion 
allows for earlier identification of noncompliance or 
safety risks—improving public health protection in 
overburdened areas. 

Integration of these technologies into state-level 
Environmental Health and Safety (EHS) dashboards or 
regulatory platforms can enable dynamic, real-time 
policy interventions. For example, predictive alerts could 
trigger automated flare gas recovery system activation, 
deploy mobile monitoring units, or prompt temporary 
operational shutdowns in high-risk scenarios. This 
proactive approach aligns with emerging policy trends 
that prioritize environmental justice, data transparency, 
and adaptive risk management at the intersection of 
industrial activity and community health. 

 
5. Practical Adoption Pathways  

 The adoption of this framework will be a 
function total cost of ownership (TCO), communications 
reliability, infrastructure upgrades and workforce 
readiness. Lower cost VOC/HAP sensors typically range 
from the low hundreds to a few thousand dollars per 
device (Mai, et al., 2025). The US EPA launched the open 
source SPod technology pilot project in the Rubbertown 
industrial district in Louisville in 2017 (EPA, Innovations 
in Air Quality Monitoring , 2020). It has since been 
commercialized with instruments now available on the 
market for fenceline monitoring. In addition, the US EPA 
also has a Fenceline Sensor Loan Program (EPA, 
Fenceline Sensor Loan Program for Improved Screening 
& Characterization of Volatile Organic Compound 
Emissions , 2024) in Region 4. In terms of the rollout, a 
staged rollout is recommended which would include a 
pilot of 5–10 nodes and collocation against a regulatory 
monitor, eventually scale-out to full fenceline coverage 
with LoRaWAN/4G backhaul and edge inference, and 
integration with site EHS dashboards. Recurring costs 
include calibration/collocation, QA/QC, periodic sensor 
replacement, and analyst time.  

The workforce readiness and training needs could 
be assessed by performing a gap assessment of required 
skillsets on current and future deployment. EPA’s 
Enhanced Air Sensor Guidebook provides training-
aligned practices for planning, operation, QA/QC, and 
interpretation (Clements, Duvall, Greene, & Dye., 2022).  

Other factors to consider in deployment includes 
sensor bias/drift from temperature, humidity, and 
weather interference. This can be mitigated by routine 
collocation with reference monitors and periodic field 

calibration (Clements, Duvall, Greene, & Dye., 2022). 
Meteorological dynamics (wind shifts, inversions, 
precipitation) can obscure plume signals; models should 
apply meteorological normalization, gap-filling, and 
uncertainty propagation. Communications interruptions 
are also a challenge in deploying this framework; 
incorporating edge buffering and store-and-forward 
logic could minimize data loss and address 
communications interruptions. In addition, the 
robustness of this framework should be verified with 
rolling-origin cross-validation, stress testing, and 
domain adaptation for new sites. These controls, 
grounded in the EPA guidance and recent calibration 
studies, improve translation of simulation results to live 
operations (Mai, et al., 2025).  
 
Based on the ever changing and more stringent 
regulations from the EPA related to chemical plants and 
refineries, the fenceline monitoring for key toxics 
remains a high priority for industries and aligning 
deployments with these mandates improves return on 
investment and reduces regulatory risk.   
 
6. Conclusion and Future Work  

This study robustly demonstrates the feasibility 
and superior performance of AI-powered fenceline 
monitoring for industrial emissions. The results 
conclusively show a reduction in critical event response 
time from 48 hours to under 5 minutes wand high 
classification accuracy of 92%, underscored by an F1-
score of 0.91 This AI-driven fenceline monitoring 
fundamentally shifts emissions management from 
reactive to a highly effective predictive and proactive 
model. By providing low-latency insights and data-
driven intelligence, these systems empower industrial 
facilities to significantly reduce their environmental 
footprint, ensure dynamic regulatory compliance, 
enhance operational efficiency, and build trust with 
surrounding communities. Future work will focus on 
enhancing model robustness, developing sophisticated 
multi-pollutant extensions, and prioritizing pilot 
deployment in at-risk environmental justice 
communities. 
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