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Abstract- Agricultural activities contribute significantly to 
global greenhouse gas (GHG) emissions, making mitigation in 
cropping systems critical for climate sustainability. This study 
establishes a robust framework by integrating process-based 
modeling using the DeNitrification–DeComposition (DNDC) 
model with a Life Cycle Assessment (LCA) approach to evaluate 
GHG emissions from corn production. The DNDC model 
simulates soil nitrous oxide (N₂O) and carbon dioxide (CO₂) 
fluxes under varying nitrogen management strategies, including 
urea and urea ammonium nitrate (UAN) applied at different 
rates and as split applications, while accounting for soil organic 
carbon (SOC) levels and residue management practices. The LCA 
combines DNDC-derived soil fluxes with upstream emissions 
from fertilizer and seed production, field operations, and 
transportation to provide a cradle-to-farm gate assessment. In 
contrast to studies dependent entirely on empirical emission 
factors, this innovative DNDC–LCA framework captures site-
specific soil dynamics while linking them to the broader 
production system, offering a mechanistic and comprehensive 
evaluation of mitigation strategies. Results show that higher 
nitrogen application rates substantially increase both fertilizer-
related and soil N₂O emissions, with cumulative emissions 
reaching 2.54 kg N₂O-N ha⁻¹ for urea and 2.40 kg N₂O-N ha⁻¹ 
for UAN at the highest rate, while split applications reduced 
emissions to 1.53 kg N₂O-N ha⁻¹ (urea) and 1.45 kg N₂O-N ha⁻¹ 
(UAN). UAN consistently produces slightly lower emissions than 
urea. Residue management influences CO₂ fluxes, with aerobic 
practices such as residue removal or composting reducing 
emissions in high SOC soils. Sensitivity analysis identifies soil 
emissions as the dominant contributor to variability, 
highlighting the importance of site-specific management and 

accurate emission factor estimation. Comparison with field 
measurements shows CO₂ emissions are more predictable (R² = 
0.62) than N₂O (R² = 0.46). These findings demonstrate that 
integrated nitrogen and residue management, coupled with 
attention to soil carbon dynamics, can reduce the carbon 
footprint of corn production while maintaining productivity. 
The innovative DNDC–LCA framework establishes a scientific 
basis to support evidence-based policies that incentivize split 
nitrogen application, promote lower-emission fertilizer choices, 
and support sustainable residue management, and provides 
farmers with practical strategies to reduce emissions without 
compromising yields. 
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1. Introduction 
Agriculture remains a major source of global 

greenhouse gas (GHG) emissions, with Canadian 
agricultural activities contributing approximately 55 
megatons of carbon dioxide equivalent in 2020, 
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accounting for about 7 to 8 percent of the nation’s total 
emissions [1]. Within this sector, emissions primarily 
arise from nitrogen cycling processes associated with 
fertilizer use, land management, and livestock 
production. The growing global demand for food 
production, combined with increasingly stringent 
environmental regulations, underscores the urgent need 
for sustainable agricultural practices that reduce GHG 
emissions while maintaining crop productivity. 

Nitrous oxide (N₂O), a potent GHG with a global 
warming potential nearly 300 times greater than carbon 
dioxide over a 100-year horizon, is largely emitted 
through nitrogen fertilizer applications in cropping 
systems. Key management practices, including fertilizer 
formulation, application timing, tillage intensity, and 
irrigation, strongly influence soil nitrogen 
transformations and the resulting N₂O emissions [1], [2]. 
Optimizing fertilizer management is therefore critical for 
reducing N₂O emissions without compromising yields. 

Recent analyses of Canadian corn production 
systems have shown that adopting enhanced-efficiency 
fertilizers, adjusting application rates, and modifying 
application timing can significantly reduce GHG 
emissions [3], [4]. However, variability in soil properties, 
climatic conditions, and management practices creates 
challenges in accurately assessing the effectiveness of 
these strategies across different production systems. 

This study addresses these challenges by 
implementing an integrated methodological framework 
that combines life cycle assessment, process-based 
biogeochemical modeling, and in situ measurement 
techniques. This approach enables a comprehensive 
evaluation of how different fertilizer types, soil organic 
carbon and residue management scenarios influence 
GHG emissions in corn production systems, providing 
data-driven insights to guide the development of 
targeted and effective mitigation strategies. 

 
 

2. Related Work 
Life cycle assessment (LCA) provides valuable 

insights into emission sources and resource-use 
inefficiencies, helping to identify effective mitigation 
strategies tailored to specific cropping systems [5], [6]. 
However, many LCA studies rely on generic emission 
factors that do not fully capture the variability in 
emissions associated with different fertilizer types or 
management practices. This limitation can reduce the 
reliability of LCA results, especially when applied to 
region- or crop-specific scenarios [7],[8]. Recent 

research increasingly focuses on integrating detailed 
agronomic data and refining emission coefficients to 
better represent diverse farming conditions [8]-[10]. 

To address these limitations, process-based 
biogeochemical models have become essential tools. 
These models simulate soil nitrogen transformations 
and greenhouse gas (GHG) emissions by representing 
the underlying biological and chemical processes. 
Commonly used models include CENTURY, DayCent, the 
DeNitrification-DeComposition (DNDC) model, and the 
Environmental Policy Integrated Climate (EPIC) model 
[11]-[13]. Among these, the DNDC model is valued for its 
detailed representation of nitrogen cycling, ability to 
estimate multiple GHGs, and adaptability to a wide range 
of fertilizer management practices [14], [15]. When 
combined with LCA frameworks, these models enable 
more dynamic and accurate environmental impact 
assessments that reflect site- and management-specific 
conditions [10], [16]. 

Evaluating nitrogen management techniques also 
requires considering their impact on crop yields, since 
yield outcomes strongly influence farmer adoption. 
Some mitigation strategies may reduce nitrous oxide 
(N₂O) emissions but lower yields, while others can 
reduce emissions without affecting or even improving 
productivity [17], [18]. The effectiveness of these 
practices depends on crop type, soil characteristics, and 
local conditions. Corn production presents challenges for 
accurate N₂O quantification due to complex nitrogen 
cycling dynamics and diverse management approaches. 
These systems often combine multiple practices that 
interact in ways that affect both emissions and yields 
[16],[19]. However, systematic assessments of combined 
practices remain limited because of logistical and 
financial constraints [20]. For example, in corn systems, 
nitrogen application timing is often linked with specific 
fertilizer types and methods, such as broadcasting and 
incorporating granular fertilizers at planting or applying 
liquid urea ammonium nitrate as side dress injections or 
bands. These interlinked practices make both emissions 
measurement and model calibration more complex [21]. 

Direct field measurements, including static 
chambers and eddy covariance systems, continue to 
provide critical emissions data but are constrained by 
high costs, limited spatial coverage, and labour intensity 
[22]. Combining empirical measurements with process-
based modeling and LCA offers a more comprehensive 
approach for assessing GHG mitigation strategies across 
different scales and farming contexts [10], [16]. This 
integrated approach supports informed decision-making 
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for nitrogen management strategies that balance 
environmental sustainability with agricultural 
productivity [13], [14]. Although many studies assess 
individual practices, real-world farming often involves 
multiple, interrelated techniques, underscoring the need 
for more holistic, systems-level analyses. 

  
3. Methodology 

This study employed the DeNitrification-
DeComposition (DNDC) model to simulate soil 
greenhouse gas (GHG) emissions under various nitrogen 
management strategies in corn production. Using site-
specific data on soil characteristics, weather conditions, 
crop management, and fertilizer applications, DNDC 
generated detailed estimates of nitrous oxide, methane, 
and carbon dioxide fluxes driven by soil biogeochemical 
processes. These process-based emission outputs were 
then integrated into a Life Cycle Assessment (LCA) 
framework following ISO 14040 and 14044 standards. 
The LCA process included goal and scope definition, 
system boundary specification, life cycle inventory (LCI) 
compilation, impact assessment, and interpretation of 
results, as illustrated in Figure 1. 

By replacing generic emission factors with DNDC-
derived soil emissions, the LCA provided a more accurate 
evaluation of both direct and indirect emissions, 
including those associated with fertilizer production, 
energy use, and field operations. “The Cool Farm Tool 
(CFT)” platform was used to assess multiple nitrogen 
and residue management scenarios. Model outputs were 
validated by comparing the simulated results with field 
measurements collected using in-situ static chambers 
and analyzed via gas chromatography. This integrated 
modeling–LCA approach enabled a comprehensive 
assessment of GHG mitigation potential while capturing 
the site- and management-specific dynamics of soil 
emissions. 

 
Figure 1. Steps to quantify GHG emissions and evaluation of 

farming practices using an integrated DNDC and LCA 
approach. 

3.1 Site Selection 
This study was conducted on a representative corn 

field, designated Location A, in eastern Canada. The 
region is characterized by fertile, well-drained loam 
soils, a humid continental climate, moderate summer 
temperatures averaging 18–22 °C, and annual 
precipitation of approximately 1,000–1,400 mm, 
distributed relatively evenly throughout the growing 
season. The site has a growing season of about 120–140 
days, supporting consistent corn production. Location A 
was selected for its typical management practices, 
including the application of synthetic fertilizers, periodic 
pesticide use, and conventional tillage, which are 
representative of commercial corn production systems 
in the region. Data from a 1.4-hectare plot were collected 
to parameterize the DNDC model and to generate a life 
cycle inventory for integration into the LCA framework. 

 
3.2 DeNitrification-DeComposition (DNDC) Model 

 The DeNitrification-DeComposition (DNDC) 
model is a process-based framework designed to 
simulate carbon (C) and nitrogen (N) dynamics in 
agricultural ecosystems [14]. It is widely used to 
estimate greenhouse gas (GHG) emissions, crop growth, 
and soil C and N transformations under varying 
management practices and environmental conditions. 
DNDC consists of two primary components: the first 
includes soil, climate, and crop sub-models, which rely 
on key ecological drivers, i.e., climate, soil 
characteristics, and management practices. The second 
component simulates nitrification and denitrification 
processes, estimating trace gas fluxes from the plant–soil 
system based on the prevailing soil environmental 
conditions.  

 
3.3 Data Collection and Inputs 

Environmental and operational data were 
compiled from field measurements, surveys, and 
established databases to support the life cycle inventory 
development. (1) Meteorological data were collected 
using Aeroqual sensors installed at multiple locations 
across the site to capture spatial variability in 
temperature, humidity, wind speed, rainfall, and 
barometric pressure. (2) Soil parameters, including 
temperature (°C) and volumetric moisture content 
(m³/m³), were monitored using HOBO MX2307 data 
loggers. (3) Management practices, such as tillage 
intensity, irrigation schedules, and pest control 
measures, were documented through structured farm 
surveys. Fertilizer information, including type and 
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application method, was obtained from local market 
sources and directly from on-farm records, as these 
inputs play a critical role in determining nitrous oxide 
(N₂O) emissions. (4) Emission factors for upstream 
processes, including fertilizer manufacturing, seed 
production, transportation, and electricity generation, 
were sourced from the Ecoinvent 3.9 database and 
supplemented with values from relevant literature  [13], 
[15]. Table 1 lists the main climate, soil, and management 
inputs used in the DNDC model for Site A. 

 
Table 1. Key DNDC model inputs for the selected site A 

Input Category Parameters Values 
Climate Data Background 

CO2 
100–510 ppm 

Background 
NH3 

0.4–1.4 ppm 

Soil properties pH 6.1–7.4 
Moisture 0.2–0.35 m3/m3 

Management Land usage cropland 
Fertilizer 
type 

(urea, urea 
ammonium 
nitrate) 

Application 
rate 

(1 or 2; 2 for split 
applications) 

Method of 
application 

Surface broadcasts 
for all four 
scenarios 

Use of 
Inhibitor 

Yes 

Manure 
input 

Poultry: 0.3; 
C:N<15: 0.2–0.3 

 
3.4 Life Cycle Assessment Model 
3.4.1.  Define System Boundaries and Subsystems 

The study adopted a cradle-to-farm gate system 
boundary, which included three main life cycle stages: 
(a) Input production, encompassing the manufacturing 
of seeds, fertilizers, and fuels; (b) On-farm activities, such 
as soil preparation, planting, fertilization, irrigation, pest 
control, and harvesting; and (c) Transportation, 
restricted to on-farm movements and immediate post-
harvest logistics. The functional unit was set as the 
cultivation of 1.4 hectares of corn, enabling consistent 
comparisons across different nitrogen management 
scenarios and system configurations. All greenhouse gas 
(GHG) emissions were expressed as CO₂ equivalents and 
standardized based on this functional unit.  
 
 
 

3.4.2.  Life Cycle Inventory Model 
The relationship between agricultural inputs and 

greenhouse gas emissions was represented using a 
matrix-based linear system [23]: 

 
A⋅ I= E                                                                              (1) 

 
whereas: “A” is a matrix of emission coefficients, each 
representing the emission rate associated with a specific 
input or process. “I” is the vector of inputs (e.g., soil type, 
fertilizers, energy use, and farming practices). “E” is the 
vector of GHG emissions (e.g., CO₂, N₂O, CH₄). 

Using an inverse matrix method, the equation for 
E (GHG emissions) was solved as follows: 

 
I=A−1 ⋅ E                                                                                            (2) 
 
Here, A⁻¹ is the inverse of the matrix A and allows 

us to determine the specific GHG emissions (CO₂, CH₄, 
N₂O) based on the inputs provided. This method 
facilitated scenario-based modeling, allowing the 
emissions associated with each fertilizer type and 
application strategy to be assessed independently. 
 
3.4.3.  Environmental Impact Assessment 

The environmental impact assessment in this 
study was performed using the CML-Impact Assessment 
(CML-IA) baseline 2016 methodology, which employs a 
midpoint-oriented approach to quantify specific 
environmental mechanisms, including climate change, 
eutrophication, acidification, and toxicity. The impact 
categories considered were global warming potential 
(GWP, 100-year horizon), eutrophication potential (EP), 
acidification potential (AP), human toxicity potential 
(HTP), and ecotoxicity potential (ETP). Life cycle 
inventory (LCI) data on emissions and resource use were 
translated into equivalent environmental burdens using 
the characterization factors provided by the CML-IA 
2016 framework, for example, kg CO₂-equivalents (CO₂-
eq) for GWP and kg PO₄³⁻-equivalents for EP [23]. 

To enable comparisons across impact categories 
and agricultural activities, results were normalized using 
regional normalization factors, which represent the 
average per capita environmental load. This 
normalization converts the characterized impact values 
into unitless scores, facilitating direct comparison of the 
relative magnitude of different environmental impacts 
and supporting an integrated assessment of trade-offs 
among climate, ecosystem, and human health domains. 
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For a more detailed evaluation of climate-related 
emissions, GWP was also calculated specifically over a 
100-year time horizon using the characterization 
factors: CO₂ = 1, CH₄ = 25, and N₂O = 298. Total climate 
impact was calculated as [7], [23]: 

 
Impact =∑ (Gi × GWP of gas)                                 (3) 

 
Where Gi represents the quantity of each emitted 

gas, and GWP is its associated global warming potential. 
This enabled a direct comparison of nitrogen 
management strategies in terms of their contributions to 
climate change. 
 
3.5 Decision Support Tool 

The Cool Farm Tool (CFT) was used as a decision-
support tool to estimate greenhouse gas (GHG) 
emissions from corn production under different 
nitrogen management strategies. This farm-level 
calculator relies on activity-based inputs, including 
fertilizer type and application rate, soil properties, tillage 
practices, and climatic variables, to estimate both direct 
and indirect emissions of CO₂, CH₄, and N₂O. The tool is 
based on IPCC Tier 1 and Tier 2 methodologies, which 
use default and region-specific emission factors, 
respectively and considers emissions from soil 
processes, input production, on-farm energy use, and 
crop residue management. By modeling multiple 
nitrogen input scenarios, the CFT enabled the 
comparison of total GHG emissions across alternative 
fertilization practices. Its integrated algorithms and 
emission factors, validated in peer-reviewed studies, 
allow for simulation of management- and site-specific 
emission outcomes, making it a practical tool for 
evaluating mitigation options in crop production 
systems. 

 
3.6 In-situ Field Data 

Greenhouse gas (GHG) samples were collected 
from static chambers installed in the soil using collars, 
with the primary purpose of validating model 
predictions. The chambers, 20 cm in height and 20–
30 cm in diameter, were equipped with a sampling port, 
vent tube, and temperature sensor, ensuring an airtight 
environment. Reflective shields were used to reduce 
heat accumulation. Key measurements recorded 
included gas concentrations, chamber volume, 
temperature, and pressure, allowing precise calculation 
of GHGs flux. Gas samples were subsequently analyzed 
using gas chromatography. 

3.7 Statistical Analysis 

The DNDC model was calibrated and validated 
using field-measured N₂O and CO₂ fluxes collected from 
Site A. Calibration involved adjusting key soil and 
management parameters (e.g., soil organic carbon 
content and fertilizer application rates) within ranges 
reported in the literature to improve the agreement 
between simulated and observed fluxes. Validation was 
then performed using independent subsets of field data 
not applied during calibration. 

Statistical analyses were conducted in R version 
4.5.1.  Model performance was evaluated using several 
statistical indicators. The correlation coefficient (R) 
measures the strength and direction of association 
between observed and simulated values, with values 
closer to ±1 indicating stronger relationships. The 
coefficient of determination (R²) represents the 
proportion of variance in observations explained by the 
model; values closer to 1.0 indicate better performance. 
In field-scale GHG studies, R² < 0.5 indicates fair to weak 
explanatory power, R² = 0.5–0.7 indicates moderate 
explanatory power, and R² > 0.7 indicates strong 
explanatory power. The standard error (SE) reflects the 
average deviation between predictions and 
observations, with lower values denoting higher 
accuracy. The p-value tests the statistical significance of 
the model–data relationship, where p < 0.05 indicates 
significant agreement. 

Sensitivity analysis was performed using 
Spearman’s rank correlation coefficients (θ) to quantify 
the relative influence of input parameters on simulated 
GHG fluxes, with θ values approaching 1 indicating 
stronger monotonic relationships. 
 

4. Results 
4.1 Evaluation of Nitrogen Management and DNDC 
Simulation Scenarios 

Two nitrogen fertilizers, i.e., urea (46% N) and 
urea ammonium nitrate (UAN, 30% N) were selected to 
generate simulations. Fertilizer applications were 
expressed as kg N ha⁻¹ for direct comparison. Five DNDC 
simulation scenarios were run to estimate cumulative 
N₂O emissions over a 90-day growing period: (a) 
Control: No N applied, (b)  N25: 25 kg N ha⁻¹, (c) N100: 
100 kg N ha⁻¹, (d) N150: 150 kg N ha⁻¹ and (e) Split: 
100 kg N ha⁻¹ applied in two equal splits. Figure 2 
illustrates cumulative N₂O emissions for urea and UAN 
across different nitrogen management scenarios.  

Baseline emissions in the control (no fertilizer) 
scenario were 1.21 kg N₂O-N ha⁻¹, representing natural 
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soil processes. Emissions increased with higher nitrogen 
rates for both fertilizers: N25 resulted in 1.70 kg N₂O-
N ha⁻¹ for urea and 1.63 kg N₂O-N ha⁻¹ for UAN, N100 
reached 1.99 kg N₂O-N ha⁻¹ (urea) and 1.88 kg N₂O-
N ha⁻¹(UAN), and N150 produced the highest emissions 
at 2.54 kg N₂O-N ha⁻¹ (urea) and 2.40 kg N₂O-N ha⁻¹ 
(UAN). These trends reflect increased nitrification and 
denitrification with higher soil nitrogen availability, 
moisture, and microbial activity [24], and indicate 
reduced nitrogen use efficiency at the highest N rate [25]. 
 

 
 

Figure 2.  Simulated Cumulative Emissions of N2O based on 
different nitrogen applications for the corn crop 

 

The split application (2 × 50 kg N ha⁻¹) lowered 
cumulative emissions to 1.53 kg N₂O-N ha⁻¹ for urea and 
1.45 kg N₂O-N ha⁻¹ for UAN. This demonstrates that 
dividing nitrogen inputs reduces peak soil N 
concentrations, mitigating N₂O emissions by enhancing 
plant uptake and reducing denitrification losses. Overall, 
UAN consistently produced slightly lower emissions 
than urea at equivalent N rates, which aligns with 
previous studies showing that banded UAN applications 
reduce N₂O emissions relative to urea by minimizing 
volatilization and improving nitrogen use efficiency [26], 
[27]. These results highlight the potential of UAN as a 
more climate-smart nitrogen fertilizer in corn 
production systems. 

 
4.2 Influence of Soil Organic Carbon on CO2 flux 

The results in Table 2 present simulated soil CO₂ 
fluxes under varying soil organic carbon (SOC) levels and 
UAN fertilizer applications using the DNDC model. At a 
baseline SOC of 0.02 kg C kg⁻¹ soil, CO₂ fluxes ranged 
from 0.06 to 3.2 Mg C ha⁻¹, depending on nitrogen 
application rates. When SOC was increased to 0.03 kg C 
kg⁻¹ soil, fluxes rose to 0.1–3.8 Mg C ha⁻¹, indicating that 

higher SOC levels enhance microbial decomposition and, 
consequently, CO₂ emissions. 

This trend reflects the well-documented 
relationship between SOC availability and soil 
respiration; whereby elevated organic carbon stimulates 
microbial activity and accelerates decomposition 
processes [28]. The effect was particularly evident in 
higher nitrogen input scenarios (N100 and N150), where 
UAN applications in SOC-enriched soils produced the 
greatest CO₂ fluxes. These findings suggest that both SOC 
content and fertilizer rate interact to regulate soil carbon 
dynamics, highlighting the importance of balanced N 
management in carbon-rich soils. 

 
Table 2. CO2 flux values based on different SOC and treatment 

scenarios for corn crop (Site A) 
Application type SOC (kg C/kg of Soil) 

0.02 0.03 
Units CO2 flux  

(Mg C per ha) 
CO2 flux (Mg C 
per ha) 

No treatment 0.06−1.5 0.4−1.8 
N25 0.09−1.2 0.2−1.5 
N100 0.92−2 1.2−2.5 
N150 1.4−3.2 1.7−3.8 
Split treatment 0.87−1.7 1.1−2.0 

 
4.3 Life Cycle Emission Inventory 

GHG emissions were normalized per ton of corn 
(total 3,164.25 kg CO₂e/ton) to allow direct comparison 
across life-cycle stages. Table 3 presents the percentage 
distribution of GHG emissions across pre-production, in-
field, and post-production activities at Site A.  
 

Table 3. GHG emission inventory by life-cycle stage for corn 
production at Site A.  

Life cycle stage Activities Emissions (kg 
CO₂e / ton corn) 

Pre-Production Fertilizer 
Production 

251.9 

Seed Production 1971.1 

Diesel usage 53.6 

Electricity usage 2.8 

Transportation 16.1 

In Field Soil CO₂ flux 529.95 

Soil N₂O flux 54.59 

Residue 
management 

96.87 

Irrigation 
(pumping) 

5.78 
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Field machinery 
use 

8.67 

Pre-
Production/In-
Field 

Pesticide & 
herbicide 

2.89 

Post-
production 

Post-harvest 
handling   

70 

Packaging 100 

 
Pre-production dominated the footprint, 

accounting for approximately 72% of total emissions, 
with seed production (1,971.1 kg CO₂e/ton; 62.3%) and 
fertilizer manufacture (251.9 kg CO₂e/ton; 8.0%) as the 
largest contributors. Diesel use (~20 L/ton; 53.6 kg 
CO₂e/ton; 1.7%), electricity consumption (15 kWh/ton; 
2.8 kg CO₂e/ton; 0.09%), and 50 km transportation (16.1 
kg CO₂e/ton; 0.51%) added further emissions. In-field 
emissions contributed roughly 22% of the total, 
including soil CO₂ flux (529.95 kg CO₂e/ton; 16.7%), N₂O 
(54.59 kg CO₂e/ton; 1.7%), residue management (96.87 
kg CO₂e/ton; 3.1%), irrigation (5.78 kg CO₂e/ton; 
0.18%), field machinery (8.67 kg CO₂e/ton; 0.27%), and 
pesticide/herbicide application (2.89 kg CO₂e/ton; 
0.09%). Post-production activities, including packaging 
(100 kg CO₂e/ton; 3.2%) and post-harvest handling (70 
kg CO₂e/ton; 2.2%), accounted for the remaining ~5% of 
total emissions. Overall, pre-production inputs 
represent the largest share of the carbon footprint, 
emphasizing seed production and fertilizer manufacture 
as key mitigation targets, while in-field and post-
production stages contribute smaller but still relevant 
shares. 

 
4.4 GHGs and Residue Management 

Residue management is a key factor influencing 
on-farm greenhouse gas (GHG) emissions, as post-
harvest biomass can undergo aerobic or anaerobic 
decomposition depending on the handling method. In 
this study, the Cool Farm Tool was used to simulate CO₂-
equivalent (CO₂e) emissions per hectare for different 
residue management strategies. The results, presented 
in Figure 3, reveal substantial variation among practices.  

Removing residues from the field for reuse 
generated no emissions, identifying it as the most 
climate-friendly option. In contrast, residues removed 
for composting without forced aeration produced the 
highest emissions (11,300 kg CO₂e/ha) due to anaerobic 
conditions that favour methane (CH₄) and nitrous oxide 
(N₂O) production. Similarly, leaving residues untreated 
in heaps or pits resulted in 8,040 kg CO₂e/ha, also driven 

by anaerobic microbial activity. Maintaining aerobic 
conditions through forced aeration composting 
significantly lowered emissions to 723.44 kg CO₂e/ha. 
Other approaches, such as field burning (341.28 kg 
CO₂e/ha) or leaving residues distributed/mulched 
(111.28 kg CO₂e/ha), also resulted in lower emissions. 
These findings underscore the importance of residue 
management practices that minimize anaerobic 
decomposition to reduce agricultural GHG emissions 
effectively. 
 

 
Figure 3. Total CO₂-equivalent emissions per hectare under 

various residue management scenarios 

 
4.5 Environmental Impact Assessment 

Figure 4 depicts the environmental impacts of 
principal agricultural operations evaluated across four 
major categories: global warming potential (kg carbon 
dioxide equivalent, kg CO₂ eq.), eutrophication (kg 
phosphate equivalent, kg PO₄³⁻eq.), air pollution/ 
acidification (kg sulphur dioxide equivalent, kg SO₂ eq.), 
and ecotoxicity (kg 1,4-dichlorobenzene equivalent, kg 
1,4-DCB eq.).  

Fertilizer production was identified as the 
predominant driver of global warming potential, largely 
due to the intensive energy consumption involved in its 
manufacturing processes and the resultant greenhouse 
gas emissions. Emissions from soils, especially nitrous 
oxide (N₂O), also accounted for a significant portion of 
the climate-related impacts, reflecting the critical role of 
nitrogen transformations driven by soil microbial 
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activity. In terms of ecotoxicity, the synthesis of 
pesticides and herbicides exerted the most substantial 
influence, indicating the heightened ecological hazards 
these agrochemicals pose to terrestrial and aquatic 
ecosystems. Conversely, practices such as residue 
management and the use of field machinery showed 
comparatively moderate effects across all categories. 
These outcomes underscore the necessity of addressing 
both on-farm emissions and upstream production 
impacts, particularly by targeting improvements in 
fertilizer and pesticide manufacturing processes and 
implementing strategies to mitigate soil nitrogen 
emissions

 
 

Figure 4. Environmental impacts of significant activities in a 
corn field 

 

 
4.6 Uncertainty Analysis and Validation 

To address the variability in emission factors and 
the heterogeneity of field management practices among 
farmers, Spearman correlation analysis was employed to 
evaluate greenhouse gas (GHG) emissions. Sensitivity 
analysis, based on Spearman correlation coefficients (ѳ) 
approaching ±1 (Figure 5), identified the parameters 
exerting the greatest influence on total GHG outputs. 

Results indicated that yield-scaled GHG emissions 
were predominantly driven by soil-based emissions, 
highlighting the pivotal role of agricultural soils in 
overall emission dynamics. In particular, the emission 
factor associated with direct soil emissions exhibited a 
strong positive correlation with total GHG release (ѳ = 
0.79–0.86), underscoring its status as the most 
influential driver of variability. By contrast, emissions 

linked to the production of herbicides, seeds, and diesel 
displayed minimal sensitivity, with very low correlation 
values. Fertilizer manufacturing and application rates 
showed moderate positive associations with total GHGs 
(ѳ = 0.18–0.28), reflecting their limited influence on 
yield-scaled emissions. These patterns emphasize the 
central role of soil emissions as a priority target for 
mitigation interventions within crop production 
systems. Despite incorporating detailed field-level 
inventory data, such as fertilizer and irrigation 
application rates, seed usage, travel distances, yield 
records, and input costs, uncertainty in emissions from 
soil processes persisted as the primary source of 
variability, marking a key limitation of the analysis. 

 

 
Figure 5. Spearman’s Rank correlation coefficients between 

yield-weighted total GHG emissions and various farm 
activities. 

 

Regression analyses were applied to evaluate the 
correspondence between DNDC-simulated and observed 
fluxes at Site A, as shown in Table 4. The correlation 
coefficient for N₂O fluxes was R = 0.635, indicating a 
moderate positive relationship between observed and 
modeled values, while the coefficient of determination 
(R² = 0.46) showed that approximately 46% of the 
variability in field N₂O fluxes was explained by 
environmental and management drivers, such as soil 
moisture, temperature, and fertilizer application rates. 
The standard error (SE = 0.21) indicated an acceptable 
level of prediction accuracy, and the relationship was 
statistically significant (p < 0.001). CO₂ fluxes, in 
contrast, typically exhibited stronger predictive fits (R² 
= 0.62), reflecting more stable and predictable emission 
patterns driven by soil respiration and temperature 
dynamics. The higher R² values for CO₂ indicate that a 
larger proportion of variability was captured by the 
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model compared to N₂O, which displayed higher spatial 
and temporal variability due to the complexity of 
microbial nitrogen cycling. These results confirm that 
soil moisture and nitrogen inputs are strong predictors 
of N₂O fluxes, whereas CO₂ emissions are more closely 
associated with soil temperature and organic matter 
availability. 

 
Table 4. Statistical evaluation of DNDC-simulated and 

observed fluxes at Site A. 
 Statistics N₂O fluxes  CO₂ fluxes  
Correlation coefficient (R) 0.635 0.79 
R Square (R²) 0.46 0.62 
Adjusted R Square 0.390 0.60 
Standard Error 0.208 0.16 
P-value <0.001 <0.001 
Number of observations 50 50 

 
5. Conclusions, Limitations, and Future 

Research 
This study demonstrates how management 

practices, including nitrogen application strategies, 
residue handling, and soil organic carbon (SOC) 
dynamics, collectively influence the greenhouse gas 
(GHG) profile of corn production systems. The DNDC–
LCA framework provides site-specific insights indicating 
that higher nitrogen application rates significantly 
increase emissions from both fertilizer manufacturing 
and soil-derived GHG fluxes. Among the fertilizers tested, 
urea ammonium nitrate (UAN) consistently produces 
slightly lower emissions than urea, while split nitrogen 
applications effectively reduce cumulative N₂O 
emissions by enhancing plant uptake and minimizing 
denitrification losses. Residue management contributes 
substantially and independently to total GHG emissions. 
Even distribution of residues results in approximately 
three times lower emissions compared to residue 
burning, demonstrating the critical role of residue 
handling as a mitigation strategy. Soil organic carbon 
levels also strongly affect CO₂ emissions, with carbon-
rich soils exhibiting greater respiration and fluxes, 
especially under higher nitrogen inputs. Excluding SOC 
from emission calculations results in an underestimation 
of total CO₂ fluxes and a misrepresentation of treatment 
effects. A summary Table 5 consolidates key findings, 
demonstrating that the combination of split UAN 
nitrogen application, inclusion of soil organic carbon 
effects, and evenly distributed residues results in the 
lowest greenhouse gas emissions among all scenarios 

evaluated in the study. These findings highlight the 
importance of integrated, site-specific strategies that 
combine optimized nitrogen management, climate-
smart residue handling, and explicit consideration of 
SOC dynamics to reduce the carbon footprint of corn 
production systems while sustaining or improving crop 
productivity. 

 
Table 5. Greenhouse gas emissions based on the best 

management practices 
Management 
Factor 

Condition Emission 
Value 

Total CO₂e 
(kg ha⁻¹) 

Nitrogen 
Application 

UAN – Split 
(2×50 kg N 
ha⁻¹) 

1.45 kg 
N₂O-N 
ha⁻¹ 

622 kg CO₂e 
ha⁻¹ 

Soil 
Respiration 
(CO₂ flux) 

SOC = 0.02 kg 
C/kg soil + 
UAN (split) 

0.87–1.7 
Mg C 
ha⁻¹ 

3,193–6,239 
kg CO₂e ha⁻¹ 

Residue 
Management 

Evenly 
distributed 

— 111 kg CO₂e 
ha⁻¹ 

 
The DNDC model provided valuable insights into 

greenhouse gas emissions at Site A; however, its 
predictive accuracy was limited. The modest fit for 
nitrous oxide (N₂O) emissions (R² = 0.46) indicates that 
key environmental variables such as soil temperature, 
moisture, and water-filled pore space (WFPS) were not 
fully captured, highlighting the need to incorporate these 
factors in future model refinements to enhance 
simulation accuracy under varying field conditions. 
Additionally, the model’s indirect approach to estimating 
carbon dioxide (CO₂) fluxes through CO₂-equivalents 
introduces uncertainty, particularly regarding 
respiration-driven emissions, suggesting that future 
efforts should focus on directly simulating CO₂ fluxes to 
improve overall greenhouse gas accounting. The 
episodic nature of GHG fluxes, driven by events like 
rainfall and fertilization, underscores the importance of 
continuous, high-frequency field measurements for 
accurate model validation; therefore, expanding data 
collection using advanced monitoring technologies is 
essential to better represent temporal and spatial 
emission variability. Finally, exploring alternative 
nutrient management strategies, such as controlled-
release fertilizers, nitrification inhibitors, and organic 
amendments like compost or manure, within the DNDC 
framework can provide effective pathways for mitigating 
emissions while promoting soil health and nutrient use 
efficiency, supporting more sustainable agricultural 
practices. 
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