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Abstract - This paper investigates the practical implementation 
of models in the energy management of buildings for complex 
user behavior and the use of multiple heating technologies, 
focusing on the development of an accurate yet efficient model. 
The study is exemplified by the new Institute for Hydrogen and 
Energy Technology building at Hof University of Applied 
Sciences, designed as a research platform for innovative energy 
solutions. We address the integration of shading strategies and 
the subsequent model order reduction necessary for effective 
Model Predictive Control application. The research involves 
creating a simplified resistance-capacitance model of the 
building's thermal zones, including its heating systems and a 
dual façade with solar thermal collectors. This simplified model, 
generated using the BRCM Toolbox and validated against a 
detailed EnergyPlus model, accounts for dynamic discrepancies, 
particularly during periods of high solar radiation. Optimization 
techniques are applied to the simplified model across different 
seasons, revealing that season-specific optimizations are more 
effective for long-term simulations, while a combined 
optimization approach is suitable for short-term and year-
round MPC applications. The results underscore the potential of 
advanced MPC strategies to enhance energy efficiency and 
sustainability in complex building systems with multiple 
renewable energy sources. 
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1. Introduction 
Meeting the climate policy goals of reducing CO2 

emissions and achieving the 1.5 °C target defined in the 
Paris Climate Agreement is crucial for mitigating climate 
change. The optimization of building climate control 
systems and regulation strategies, especially through the 
integration of renewable energy sources, is an essential 
part of these efforts, as highlighted by the International 
Renewable Energy Agency (IRENA) [1]. At Hof 
University of Applied Sciences, the new Institute for 
Hydrogen and Energy Technology (iwe) serves as a 
research platform that embodies these principles, 
integrating a variety of renewable energy sources into a 
holistic building concept [2]. This innovative building 
project includes lecture halls, offices, and various 
laboratories related to energy systems and water. This 
multifunctional facility supports both academic 
activities and experimental research. It is equipped with 
solar panels on the façade and roof, which provide 
passive solar shading - increasing solar radiation in 
winter and improving solar protection in summer – 
while also serving as a platform for further sustainable 
energy solutions. The building's energy system includes 
photovoltaic modules, a central 150 m³ thermal 
stratified storage tank, micro combined heat and power 
units, heat pumps with ice storage systems and air 
absorbers. Inside, the laboratories will be equipped with 
test set-ups, including smaller heat pumps and burner 
test stands. The building's climate control strategy 
combines conventional HVAC systems (mainly for 
heating) with underfloor heating in the offices, 
additional radiators in the laboratories and ceiling 
panels in the technical areas. The aim of this work is to 
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develop a comprehensive building model that enables 
efficient control, particularly in the context of Model 
Predictive Control (MPC). Accurate modeling is crucial, 
especially for capturing seasonal variations and periods 
of increased solar radiation in conjunction with heating 
demands. The approach uses a simplified resistance-
capacitance (RC) model created with the Building 
Resistance-Capacitance Modeling (BRCM) Toolbox [3] 
and is validated against a detailed EnergyPlus [4] 
simulation model. This RC model facilitates dynamic 
simulations and subsequent optimization for year-round 
control. 

This study builds on important previous work. 
Drgoňa et al. emphasize the comprehensive 
understanding required for effective MPC 
implementation [5]. Li et al. provide an in-depth 
investigation of RC models in building simulation, 
focusing on gray-box modeling [6]. Various simulation 
environments, such as FastBuildings (Modelica) [7], 
RC_BuildingSimulator (Python) [8] and BRCM in 
Matlab®/Simulink [3] provide tools for this purpose. In 
particular, the BRCM Toolbox supports the automatic 
generation of RC models, which are essential for accurate 
and efficient building simulations. Several studies [9]-
[14] demonstrate the use of the BRCM Toolbox for 
developing state space models in the context of building 
energy simulations. However, during periods of high 
solar radiation, the model cannot fully capture the 
thermal behavior accurately [3], [15]. Hatanaka et al. 
successfully optimized the model using the data 
generated by EnergyPlus for the thermal behavior in 
summer [15]. Building on these results, this paper aims 
to further explore different time periods, shading, and 
multiple heating methods within such an optimization 
framework. However, a complete survey of the vast 
literature is beyond the scope of this paper. 

The article is structured as follows: Section 2 
describes the development of a detailed EnergyPlus 
model (Subsection 2.1) and its reduction using the BRCM 
Toolbox (Subsection 2.2). The core of this work in 
Subsection 2.2 is an optimization strategy for high solar 
radiation to improve year-round model accuracy. 
Section 3 compares the simplified and optimized models 
to the comprehensive EnergyPlus model, evaluating 
their MPC suitability. Section 4 concludes with key 
findings and an outlook on future MPC research. 

 

2. Methods 
This section outlines the methodology for 

generating a bilinear model from a detailed Energy Plus 

simulation model using the BRCM Toolbox [3] and its 
optimization for conditions with elevated solar 
irradiance based on the approach outlined by Hatanaka 
et al. [15].  

 
2. 1. Building models 
To create a comprehensive foundation for analysis and 
optimization, a detailed building model with 62 thermal 
zones was developed with SketchUp as graphical editor 
using architectural drawings of the institute's building. 
This EnergyPlus model incorporates the various heating 
systems, enabling realistic simulations of building 
operations. The model considered standardized heating 
schedules and used 2010 reference data [16] for external 
conditions like solar radiation and ambient temperature. 
The normal vector of the north façade of the building is 
oriented 10° east of true north (see Figure 1). 
 

 
Figure 1. South-east view of the 62 zone EnergyPlus model 

incl. solar thermal collectors and thermal zone 8. 

 

 
Figure 2. Reduced 19 zone model incl. thermal zone 8. 
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For efficiency, the detailed model was reduced to a 
19-zone version by merging zones with similar thermal 
characteristics, such as offices or laboratories on the 
same floor and façade. This consolidation preserved 
thermal accuracy while simplifying the simulation, 
guided by existing literature [17]-[20]. Heating systems 
in the simplified model were directly adopted from the 
detailed EnergyPlus model for consistency. The 
simplified model was then applied and optimized using 
the BRCM Toolbox. Validation against the detailed 
model, based on weighted average room temperatures, 
confirmed its accuracy. Thermal zone 8 (TZ 8), with the 
largest window-to-wall ratio, located on the south façade 
and equipped with a ventilation unit and conventional 
radiators, was chosen for further validation of 
optimizations and simulations (see Figure 2). 

 
2. 2. BRCM Toolbox and optimization 

The BRCM Toolbox is designed to create efficient 
and accurate building models for MPC applications. 
Initially, a linear thermal model is generated using the 
building's construction and geometry data, capturing the 
fundamental thermal dynamics and heat transfer 
properties of the building. In the second module, 
External Heat Flux (EHF) models are added, 
parameterized with additional data specific to the 
building's systems, such as air handling units (AHU), 
radiators, and underfloor heating, as well as further 
construction and geometry details. The combination of 
these submodels encapsulates the system's dynamics 
and is formally represented in Eq. (1) 
 

xk+1 = Axk + 𝐵𝑢𝑢𝑘 + 𝐵𝑣𝑣𝑘 +∑(

𝑛𝑢

𝑖=1

𝐵𝑣𝑢,𝑖𝑣𝑘

+ 𝐵𝑥𝑢,𝑖𝑥𝑘)𝑢𝑘,𝑖 

(1) 

 
In this representation, the dynamics are structured 

through key matrices that describe the building's 
thermal behavior and interactions, as detailed in the first 
three terms on the rhs. of Eq. (1). Matrix A captures the 
building's internal thermal dynamics, including heat 
capacities and fluxes through building elements. Matrix 
Bu represents the influence of control inputs, such as 
heating power and blinds position, on the temperature 
states. These inputs are summarized in vector u, 
containing transient sequences derived from EnergyPlus 
for later simulation and model comparisons. Matrix Bv 
accounts for external disturbances, including solar 

radiation and ambient temperature, summarized in 
vector v. 

A crucial aspect of the combined model is the 
inclusion of bilinear terms in Eq. (1), representing the 
interactions between temperatures (states x), control 
inputs (u), and external disturbances (v). These bilinear 
terms are essential for modeling complex thermal 
behaviors. The matrix Bvu captures the interaction 
between external disturbances and control inputs, such 
as the combined effect of solar irradiation and blinds 
position on heat fluxes. The matrix Bxu describes the 
interaction between the system states (temperatures) 
and control inputs, e.g. capturing how the current 
temperature within building zones influences the 
effectiveness of heating actions. 

The final modeling step is the discretization of the 
combined model, converting continuous equations into a 
form suitable for numerical optimization with fixed time 
steps, here one-hour intervals. This ensures accurate and 
efficient predictions of the building's thermal behavior 
under various conditions, making the model robust and 
practical for real-world applications [3]. 

The initial comparison between the simplified 19-
zone toolbox model and the detailed EnergyPlus model 
revealed notable discrepancies, particularly during 
periods of high solar radiation. These issues, as also 
noted in previous studies [3], [15], primarily affect the 
heat flow representation through windows and highlight 
the need for focused optimization. By refining the Bvu 
matrix to better capture solar influences and the dual 
façade's shading effects, the optimization process aims to 
align the simplified model more closely with the detailed 
EnergyPlus results. The next paragraph outlines the 
specific optimization steps taken to address these issues 
and enhance predictive accuracy under varying solar 
conditions. 

The optimization process utilized a nonlinear least-
squares solver (lsqnonlin of Matlab®) [21], [22] to refine 
the Bvu matrix in the bilinear part of the model. 
Constraints were applied to ensure physically sensible 
solutions by strongly limiting deviations from the 
original entries. Only entries related to solar irradiation 
intensities in the Bvu matrix were optimized. The 
effectiveness of the refined Bvu matrix was evaluated 
under various criteria, including optimization duration, 
solar irradiance levels, and the passive shading effects of 
the dual façade. Seasonal performance evaluations 
(winter, spring, and summer) provided insights into the 
robustness and adaptability of the optimized matrix, 
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capturing the thermal dynamics of the modeled 
environment. 

Three optimization variants were carried out. The 
first, referred to as summer optimization, follows the 
method of Hatanaka et al. [15] and focuses on the first 
week of July, refining the Bvu matrix to better account for 
high solar irradiance and passive shading effects typical 
of summer. This ensures more accurate simulations 
under peak solar loads. The second, winter optimization, 
focuses on the first week of January, adjusting the Bvu 
matrix to represent thermal dynamics during lower solar 
irradiance and increased heating demands. The third, 
combined optimization (January-July), uses a dataset 
combining the first two weeks of January and July to 
create a holistic model capable of capturing thermal 
dynamics across both seasons. 

The performance of these models was further 
assessed outside the optimization periods, starting in the 
third week of January, March, and July. This evaluation 
validated the ability of each optimized matrix to handle 
thermal dynamics across the year. 

 

3. Results 
For a representative analysis, the thermal zone 8 

from the 19 zone toolbox model was selected as already 
described in the building models’ section. Specifically, it 
is expected to exhibit the behavior highlighted by 
Hatanaka et al. [15] and Sturzenegger et al. [3], wherein 
the toolbox-generated model tends to noticeable 
deviations when simulating the dynamics of building 
temperatures during summer months with higher solar 
irradiation. To demonstrate this also for the models used 
here, initially, however, a comparison is drawn between 
the results obtained from the elaborated EnergyPlus 
model with 62 zones and the initial model generated by 
the BRCM Toolbox with 19 zones, focusing on winter, 
spring, and summer months. The corresponding outdoor 
temperatures and solar irradiation, exemplified on the 
south façade, are shown in Figures 3 to 5. Initial 
temperatures of inner wall layers, which are part of the 
state vector x, could not be retrieved from EnergyPlus. 
For the simulation, we simply used the temperature of 
the adjacent room as an approximation. Subsequently, a 
detailed examination of different optimization methods 
is conducted, evaluating their suitability for simulating 
the building with associated thermal zones. 

 
Figure 3. Solar irradiation on south façade (dotted) and 

ambient temperature (solid) in winter. 
 

 
Figure 4. Solar irradiation on south façade (dotted) and 

ambient temperature (solid) in spring. 

 

 
Figure 5. Solar irradiation on south façade (dotted) and 

ambient temperature (solid) in summer. 
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We start with discussing the performance of the 
initial toolbox model with reference to Figures 6 to 8. It 
is important to note that the observed 'drop' in the 
toolbox results, specifically the indoor temperature of 
TZ 8 on the first day of each simulation series, can be 
attributed to the preselected room temperature 
conditions – extracted from EnergyPlus – imposed on the 
individual wall layers No initialization simulation was 
performed to begin the computation in a ‘steady-state’ 
condition. Consequently, the temperature profile across 
the wall layers may not accurately reflect realistic 
conditions at the simulation start. No initialization 
simulation was performed to ensure consistent initial 
conditions for the computation. Consequently, the 
temperature profile across the wall layers may not 
accurately reflect realistic conditions at the simulation 
start. 

During the first week of the winter observation 
period, the toolbox model produced its most accurate 
results, with discrepancies of approximately 1 °C 
emerging after a few days. By the end of the second week, 
however, substantial deviations of several degrees 
Celsius became apparent. These divergences were 
initially less pronounced during the first 12 days, partly 
due to the steadily declining ambient temperature (from 
approximately 3°C to -8.6°C) and the simulation period 
beginning with a weekend, during which no active 
heating occurred. The high window-to-wall ratio 
combined with the low sun angle in winter and minimal 
shading provided by the dual façade, contributes 
significantly to these deviations from the EnergyPlus 
data. These discrepancies persist throughout the 
observation period due to consistently high and even 
increasing solar irradiation levels. Furthermore, the 
active heating calculated by EnergyPlus during at least 
the first six weeks also contributes to higher indoor 
temperatures compared to the toolbox model results. 

In the spring period, the model exhibits even more 
significant deviations. These discrepancies can be 
partially attributed to the initial conditions and to the 
high solar radiation (see Figure 4). In the first one-and-
a-half weeks, poor weather with lower solar gains and 
lower ambient temperatures limited indoor temperature 
discrepancies. As ambient temperatures rose and sunny 
conditions prevailed, the indoor temperature deviations 
increased markedly. For instance, in week four, low 
ambient temperatures combined with heavy cloud cover 
required additional heating, which is reflected in the 
plateau observed in EnergyPlus temperature data (see 
Figure 7). After this period, additional heating was no 

longer needed, and the toolbox model continued to 
diverge from the EnergyPlus reference as solar gains 
intensified. 

In the first two days of the summer season, the 
model performs comparatively well due to low 
irradiation levels. However, as soon as the irradiation 
increases after a few days, significant deviations in the 
model's accuracy become apparent. Over the first four 
weeks, the indoor temperature in TZ 8 rises steadily, 
interrupted only by a brief decline caused by a 
temporary drop in ambient temperature. For the 
remainder of the simulation period, the model shows a 
strong dependency on ambient temperature and solar 
gains. The large window area in TZ 8 amplifies its 
sensitivity to solar radiation, resulting in pronounced 
deviations. In contrast, zones with smaller window-to-
wall ratios exhibit smaller discrepancies, underscoring 
the critical influence of solar gains on model accuracy. 
These deviations highlight the need for optimization, 
particularly for periods with higher solar radiation. 
 

 
Figure 6. Evaluation of the room temperature for the Initial 

Toolbox Model (solid), EnergyPlus (dotted) in winter. 
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Figure 7. Evaluation of the room temperature for the Initial 

Toolbox Model (solid), EnergyPlus (dotted) in spring. 

 

 
Figure 8. Evaluation of the room temperature for the Initial 

Toolbox Model (solid), EnergyPlus (dotted) in summer. 

 
The first optimization, which follows the methodology of 
Hatanaka et al. [15], focuses on the summer period, in 
specific the first week of July (see Figures 9 to 11). The 
objective of this optimization was to adapt the Bvu 
matrix to take into account the increased solar 
irradiance and passive shading effects without active 
heating. As in previous analyses, the initial decline in 
room temperature caused by the initialization 
assumptions is again noticeable. However, this 
optimized model provides an improved representation 
of thermal dynamics, particularly under high solar 
irradiation, delaying the impact of extreme weather 
conditions on room temperature. Consequently, the 
initial undercooling persists slightly longer in this 
optimized version. This effect is most pronounced in 
winter, due to the lack of heating gains over weekends, 

and in summer, following early cold spells with low solar 
gains (see Figures 5, 9, and 11). In spring, this effect is 
minimal and short-lived due to higher solar irradiation 
present from the start. 

The summer-optimized model shows good 
agreement with the EnergyPlus model during summer 
and spring, successfully integrating seasonal shading 
effects provided by the dual façade design. Notably, it 
also performs well during a temporary heating period in 
the fourth week of spring, accurately representing 
heating loads under low solar irradiation conditions, 
despite the optimization not being explicitly tailored for 
such heating scenarios.  

In contrast, significant discrepancies arise in winter, 
where the model fails to maintain minimum room 
temperatures even with integrated heating systems, 
highlighting limitations for year-round simulations. This 
issue would lead to overestimated heating gains in an 
MPC application, resulting in inefficient building 
operation. Furthermore, during the early weeks of the 
winter simulation, a slight overshoot in room 
temperature, typically less than 1 °C is observed at the 
beginning of each heating cycle. This behavior is 
attributed to the optimization of the Bvu matrix, which 
incorporates interactions between external factors and 
internal climate control systems. However, the quality of 
the model results decreases over longer simulation 
periods, such as winter, leading to significant deviations 
during prolonged heating periods. 
 

 
Figure 9. Evaluation of the room temperature for the 

summer-optimized model (solid), EnergyPlus (dotted) in 
winter. 
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Figure 10. Evaluation of the room temperature for the 

summer-optimized model (solid), EnergyPlus (dotted) in 
spring. 

 

 
Figure 11. Evaluation of the room temperature for the 

summer-optimized model (solid), EnergyPlus (dotted) in 
summer. 

 

The second optimization focuses on the winter period, in 
particular the first week of January (see Figures 12 to 
14). This optimization attempts to modify the Bvu matrix 
to more accurately capture the thermal dynamics typical 
of winter, including heating operations and reduced 
shading due to the lower sun angle combined with the 
dual façade concept.  

This winter-optimized model performs well in 
January and February, but discrepancies occur again in 
March as soon as solar irradiation level increases (see 
Figures 3 and 12). Temperature spreads of over 20 °C are 
successfully captured with this optimization and show 
no significant deviations from the reference model, even 
during weekends when no heating gains are present. 

Although the early morning peaks described above 
persist, the subsequent hourly temperature values align 
closely with the EnergyPlus reference.  

Significant deviations are also observed in summer, 
indicating the model's unsuitability for year-round 
simulations (see Figure 14). After an initially 
undercooled phase, external influences cause internal 
temperatures to rise excessively. Within approximately 
one week, the model's simulated temperatures exceed 
the EnergyPlus reference once again. Nevertheless, the 
winter-optimized model achieves notably lower 
maximum temperatures compared to the unoptimized 
version, reducing the peak from over 60°C to just under 
40°C. 

A similar improvement is observed in the spring 
period, where the maximum temperatures are reduced 
from 52°C in the unoptimized model to 34°C in the 
winter-optimized version (see Figure 13). At the 
beginning of spring, the winter-optimized model aligns 
relatively well with the EnergyPlus reference due to low 
solar irradiation and declining ambient temperatures. 
However, during the transition from week 2 to 3, short 
periods of higher solar irradiation lead to noticeable 
deviations. 
 

 
Figure 12. Evaluation of the room temperature for the 

winter-optimized model (solid), EnergyPlus (dotted) in 
winter. 
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Figure 13. Evaluation of the room temperature for the 

winter-optimized model (solid), EnergyPlus (dotted) in 
spring. 

 

 
Figure 14. Evaluation of the room temperature for the 

winter-optimized model (solid), EnergyPlus (dotted) in 
summer. 

 
The third optimization approach combines data from the 
first two weeks of January and July to create a more 
versatile Bvu matrix capable of managing thermal 
dynamics across both, winter and summer periods. This 
optimization accounts for heating activities, varying 
solar angles and the dual façade concept (see Figures 15 
to 17). As observed in previous scenarios, initial 
deviations were present in both the winter and summer 
simulations due to the chosen initialization assumptions. 

During the winter simulation, this optimization was 
capable of maintaining room temperature in heating 
periods over a longer duration, resulting in minor 
deviations from the EnergyPlus model. This outperforms 
all other scenarios, including the purely winter-

optimized model, from January to May. While 
temperature peaks at the beginning of each day could not 
be entirely eliminated, the remaining hourly values 
aligned closely with the EnergyPlus reference. Only after 
week 8, when solar irradiation increased significantly, 
the model displayed slightly elevated temperatures, with 
maximum deviations of approximately 2 °C. 

In the first week of spring, this combined 
optimization also performed well compared to other 
optimizations. Although it did not match the quality of 
the summer optimization results, it better maintained 
room temperature over a longer period than the winter 
optimization and the initial model. This improvement is 
likely due to better incorporation of solar altitude and 
the increased passive shading effects of the dual façade 
concept in later periods. After a noticeable deviation 
between weeks 2 and 3, the temperature gradually 
realigned with the reference values as solar gains 
decreased. A similar pattern was observed around week 
7, followed by a return to better agreement with the 
EnergyPlus data in subsequent periods. Future 
optimizations might benefit from including periods with 
medium solar elevations, such as in spring or autumn.  

In the summer simulation, good values were 
achieved within the first week. However, values slightly 
began to diverge again afterward. After two weeks of 
simulation, the deviation remained within 
approximately 1 °C. With declining solar irradiation, the 
calculated temperature consistently remained slightly 
above the reference values. This behavior may indicate 
limitations in the model's ability to accurately represent 
building heat losses during prolonged periods. 
 

 
Figure 15. Evaluation of the room temperature for the 

combined January/July-optimized model (solid), EnergyPlus 
(dotted) in winter. 
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Figure 16. Evaluation of the room temperature for the 

combined January/July-optimized model (solid), EnergyPlus 
(dotted) in spring. 

 

 
Figure 17. Evaluation of the room temperature for the 

combined January/July-optimized model (solid), EnergyPlus 
(dotted) in summer. 

 
As the previous assessment focused on only one of 

the 19 thermal zones, an analogous assessment was also 
carried out for each of the remaining 18 zones. Across all 
seasons, the combined optimized model showed the best 
performance for short durations. For longer dynamic 
simulations, it is recommended to use models optimized 
specifically for each time period. Therefore, selecting 
between summer and winter optimizations is sufficient 
for model selection. The optimization data, based on the 
EnergyPlus model, include the integrated shading 
concept of the dual façade, which affects the building's 
thermal balance across different seasons and solar 
elevations. Moreover, the optimized model accounts for 
internal factors and various HVAC systems such as the 

AHUs, radiators, and underfloor heating, particularly 
during winter months. For the main focus on MPC, the 
combined optimized model consistently delivers good 
results across all relevant thermal zones, especially for 
shorter periods (less than two weeks), making it suitable 
for implementation within a MPC framework.  

Regarding possible errors, inaccuracies can 
generally arise due to the simplification of the physical 
model by the BRCM toolbox. These effects could be 
amplified by the reduction of the geometric model, which 
combines similar rooms, potentially leading to accuracy 
issues when considering internal heat flows between 
thermal zones. Despite these factors, the temperature 
results – also for other thermal zones within the building 
– remain realistic, and  the trends influenced by external 
factors such as the ambient temperature or solar 
radiation, align with expected physical behavior, as 
confirmed by the EnergyPlus reference data. This 
program, which was used to determine the reference 
data sets, also offers extensive configuration options for 
almost all aspects and subsystems of an energetic 
building model. For the basic configuration of the white 
model and the internal system technology, the default 
values were used as far as possible. Further refinement 
and optimization of these parameters could increase the 
accuracy of the reference data used for future 
optimization.  

Additionally, changes in building furnishings or 
modification to specific rooms may influence the internal 
thermal behavior. For instance, increased solar radiation 
entering through windows might affect not only the 
observed zone but also neighbouring rooms in a 
modified way. Similarly, future additions to the building, 
such as equipment or systems, could impact the 
simulation results and control precision due to further 
internal gains. However, since the building is still under 
construction and real measurement data will soon be 
available for further validation, these risks are expected 
to diminish in the medium to long term, supporting 
robust building regulation. 

To further improve the reliability and accuracy of 
the validation simulations presented here, future studies 
could also include initialization simulations. This should 
enable a more precise representation of temperature 
distributions across various wall layers and their 
associated heat losses or gains, simulating a consistent 
state before the actual simulation or validation. 

Greater accuracy in the model optimization could be 
achieved by using localized weather data directly 
measured at the exposed site, and integrating it into the 
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EnergyPlus simulation. Additionally, employing longer 
optimizations datasets would enhance the precision of 
the optimized model. While only one of the five system 
matrices was optimized in this study, the fundamental 
thermal and physical behavior of the building will largely 
remain intact. This flexibility ensures that the model can 
realistically adapt to specific conditions outside the 
currently optimized data sets. With these improvements, 
the accuracy of the predicted values could be further 
increased, which would lead to the development of more 
precise models and thus to higher efficiency levels in 
future buildings. 

 
4. Conclusion 

The primary focus of this investigation was the 
practical modeling of a building and its thermal zones, 
including multiple heating technologies and shading 
using a dual façade concept. The focus was on the ability 
to accurately map the dynamic behavior, particularly for 
the future implementation of a predictive building 
control system. A detailed EnergyPlus model served 
initially as a reference and data basis, which was then 
converted into a reduced model by simplification of the 
building and room properties of individual zones using 
the BRCM Toolbox. Deviations from the reference model, 
particularly in the summer months with higher solar 
irradiation, were adjusted using various optimization 
strategies over different time frames. The optimizations 
were carried out for the summer and winter periods, and 
also combined for January and July. It has been shown 
that for longer-term simulations of the building, it is 
advisable to use models that are optimized for the 
respective time period or season, as they are capable of 
providing good-quality results over a longer period. The 
combined optimization for summer and winter periods 
provided favorable outcomes for different seasons and 
external conditions within short time frames, making it 
still suitable for further use within MPC for the building. 

In terms of model accuracy, future optimizations 
can be made to further refine the models. This could 
include extending optimization periods for seasonal 
models and expanding the dataset for the development 
or refinement of combined-season models. Furthermore, 
incorporating additional state variables, such as the 
external temperatures of the façade layers, into the 
optimization process beyond the use of only thermal 
zone values from EnergyPlus could provide even more 
precise insights into the shading effects of the dual 
façade concept on internal temperatures, even if at the 
expense of optimization time. The research focus should 

now shift towards the implementation of MPC utilizing 
model reduction techniques to streamline the 
complexity of the current model. This will enable more 
efficient and effective control strategies to be 
implemented. Future efforts will also include a rigorous 
validation of the presented models with real data from 
the institute and its complex thermal zones after 
completion. This validation aims to ensure the 
practicality and reliability of such models in real-world 
scenarios, improving their applicability and 
effectiveness in optimizing the building energy 
management. 
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