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Abstract - Air pollution exposure poses a major risk to human 
health, with devastating effects ranging from causing 
respiratory and cardiovascular diseases, to adverse impacts on 
cognitive abilities, mental health, and prenatal development. In 
the case of an excessive build-up of air contaminants, emergency 
measures must be enacted to reduce human exposure and 
decrease pollution levels. Hence, cities worldwide have invested 
in sophisticated air pollution monitoring systems to assess 
pollution levels and inform public health advice. Predicting 
spikes in air pollution a few hours in advance is critical in 
reducing human exposure as much as possible. While deep 
neural networks have become popular for this task, standard 
machine learning approaches remain very attractive: they 
deliver competitive performance without relying on specialised 
equipment and consume much less energy than their deep 
learning counterparts. Experiments conducted on London air 
quality data demonstrate that Linear Regression achieves state-
of-the-art performance, with 1-hour and 24-hour predictions 
displaying 0.2 and 3.2 mean absolute errors respectively. 
Moreover, its energy usage is a fraction of that of its deep 
learning competitor, LSTM, consuming over 2000 times less 
energy for training, and over 100 times less energy for 
prediction. The results demonstrate that standard machine 
learning approaches can provide an accurate and energy-
efficient approach to air pollution forecasting, without 
prohibitive hardware investments. 
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1. Introduction & Related Work 

London is often nicknamed “The Big Smoke”, in 
reference to the heavy air pollution spurred on at the 
dawn of the Industrial Revolution. The large quantities 
of coal being burned in homes and factories led to the city 
often being enveloped in thick, toxic, yellow-green fogs 
called “peasoupers” [1]. The situation reached a critical 
point in 1952, when the Great Smog of London killed 
over 4,000 people in 5 days [1] [2]. This led to the first 
legislation aimed at controlling dangerous emissions 
being established in 1956 [3]. Although air quality is now 
meticulously monitored in the city, 3,600 to 4,100 deaths 
were attributed to air pollution in 2019 [4]. This 
situation led Public Health England to categorise human-
made air pollution as the most significant environmental 
risk to public health in the UK. The two most dangerous 
pollutants are nitrogen dioxide (NO2) and fine 
particulate matter with a diameter of 2.5μm or less 
(PM2.5). London authorities put in place an Ultra Low 
Emission Zone (ULEZ) to reduce air pollution. Since 
internal combustion engines are the main sources of 
NO2, its emissions between 2019 and 2022 were 
reduced by 23%. Unfortunately, PM2.5 emissions only 
decreased by 7% [5]. Indeed, they are much more 
difficult to both control and predict as only 30% are due 
to road traffic: over 50% come from 
regional/international sources and 17% from 
households burning wood and coal for heating.  

Forecasting air pollution proves invaluable in 
providing information about pollution levels, enabling 
policymakers to implement measures to mitigate its 
impact. Thus, many studies have developed air quality 
forecasting models [6], based on statistical, 
deterministic, physical, and machine learning (ML) 
approaches [7]. Methods relying on probability and 
statistics tend to be intricate and less effective than ML-
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based models, which have demonstrated more reliability 
and consistency. Among them, Support Vector 
Regression (SVR) has performed well in predicting 
pollutants and particulate levels [7] [8]. Random Forest  
(RF) and XGBoost have also proved efficient and able to 
handle multimodal data such as street map and weather 
data [9]. Recently, deep learning (DL) approaches have 
been particularly popular. They include hybrid models 
such as Convolutional Neural Network- Recurrent 
Neural Network (RNN), Attention-RNN, and RNN-LSTM 
(Long Short-Term Memory) [10] and [11].  

Efforts in air pollution prediction have been 
concentrated in highly polluted megalopolises in Asia. A 
bibliometric analysis showed that the vast majority of 
the 2962 related papers published between 1990 and 
2021 were published in China, the USA, and India, with 
China accounting for over 1000 of these studies [12]. 
Comparatively, there has been limited research in this 
area based in the UK, which made up only approximately 
100 of the studies reviewed. Still, in recent years, a few 
papers have been published, analysing, and predicting 
pollution in major cities within the UK. A 2022 study 
compared the effectiveness of 12 different ML methods 
for forecasting PM2.5 in London [13]. Among the 
methods surveyed, a simple Linear Regression (LR) 
model proved the best standard ML method, achieving a 
mean absolute error (MAE) of 0.333. However, LR was 
narrowly outperformed by a DL method, LSTM, which 
achieved an MAE of 0.292, suggesting that DL does 
provide some improvement in predictive performance.  
However, research performed on data from Nottingham 
(UK) reached a conflicting conclusion, with AdaBoost 

and K-Nearest Neighbours (KNN) achieving better 
results than LSTM and Bi-LSTM [14]. AdaBoost and KNN 
were both able to predict the PM2.5 level (in µgm-3) with 
an MAE below 0.5, whereas LSTM and Bi-LSTM predicted 
with MAE of 5.482 and 2.077 respectively. Even other 
standard ML methods outperformed the DL methods, 
with LR and SVR achieving MAE values of 2.08 and 2.00. 

While model performance is crucial when choosing 
a ML approach, its energy and carbon footprints should 
also be considered. Indeed, the ML community has 
started reflecting on the balance between performance 
gains and environmental impact as per [15] and [16] 
respectively. This issue has particularly been 
exacerbated with the arrival of large language models, 
each being responsible for hundreds of tonnes of CO2 
equivalent [17]. Moreover, as the trend during the DL era 
has been to see computational requirements double 
every 2 months [18] and [19], DL may soon emerge as a 
counterforce in the battle against climate change [19]. In 
addition, the cost of specialised hardware, which is 
required for DL, can be a barrier to entry for individuals 
and organisations creating inequality within and 
between communities. This is particularly distressing as 
air pollution already reinforces socio-economic 
inequalities [20].  

Recent studies suggest that the performance gain of 
using DL for air pollutant prediction may be minimal 
[13] or non-existent [14]. Additionally, [14] showed that, 
in addition to producing better-quality predictions, 
standard ML methods have significantly lower 
processing costs compared to DL algorithms. Indeed, Bi-
LSTM took over 30x longer to execute than KNN. This 

Figure 1: Data used for this study; hourly PM2.5 measurements 1st Jan. – 1st May 2019, from the Eltham monitoring station 
in Greenwich, London. Colour-coding follows the DEFRA PM2.5 banding to visualise air quality levels [22]. 
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raises the question of whether the increased 
computational cost of DL is justified by its performance 
compared to that of standard ML models. Using LSTM as 
a DL representative, this study will compare the 
performance and energy consumption of a variety of ML 
algorithms to identify a method which provides accurate 
predictions for various prediction horizons, while being 
sustainable in terms of environmental impact. 

 

2. Methods 
The data used in this study consists of hourly 

PM2.5 measurements (in µgm-3) from the Eltham 
monitoring station in the Royal Borough of Greenwich, 
London. They were extracted from a wider dataset 
consisting of values from seven different stations over 
120 days, from 1st January to 1st May 2019 [21] (Figure 
1). Although this figure reveals that air quality is usually 
low according to the DEFRA PM2.5 banding [22], it also 
highlights almost weekly PM2.5 peaks that regularly 
enter the moderate and high pollution levels.  

Figure 2 shows the methodology used to develop 
the models. After following the data preprocessing 
approach reported in [13], the data were restructured 
into a sliding window format (Figure 2(b)) before being 
used for predictions (Figure 2(a)). Then, traditional ML 
approaches, (i.e., linear regression, RF regression, and 
XGBoost), and a DL model (i.e., LSTM) were evaluated for 

forecasting hourly PM2.5 concentration in Eltham. 
Several sliding window sizes were trialled for each 
method, starting with 3-hour increments (3 hours, 6 
hours, etc), and then narrowing down within ranges of 
values where the model’s performance was best. A 
subset of these results is shown in Table 1. 
Hyperparameter optimisation was carried out for each 
model using an iterative process as described in Figure 
2. The best hyperparameter values for each model at 
each sliding window length are reported in Table 1. 

This study goes much further than [13] and their 
next hour predictions as it not only investigates 
predictions for longer horizons from 3 to 24 hours, but 
also their associated energy consumption. As the size, in 
hours, of the sliding window is an important 
performance factor for a given model, values from 3 to 
24 hours were investigated. Moreover, the 
hyperparameters for RF regression, XGBoost and LSTM 
were optimised using a grid search approach. As per the 
standards in the field, the root mean squared (RMSE) and 
mean absolute errors were used to evaluate the models. 

Since this work aimed to identify an air quality 
forecasting method that provides the best performance 
while using as little energy as possible, the energy usage 
of both training and prediction processes for each model 
was calculated. As the CodeCarbon package is well-
documented [23], it was chosen to estimate energy 
consumption in kilowatt-hours (kWh). 

  

3. Results 
Table 1 reports performance of the various 

methods when predicting PM2.5 measurements for the 
following hour. There, the implementations of RF 
regression and XGBoost achieve similar results to those 
reported in [13] and are less performant than both LSTM 
and LR. Interestingly, one can observe that LR 
outperformed all other methods, including LSTM, the 
best method reported by [13]. This may be explained by 
the fact that, whereas their study considered a much 
shorter sliding window, i.e., 3 hours, this study explored 
a wider range of sliding window lengths. Although a 24-
hour window was expected to capture potential daily 
patterns, a 19-hour window proved optimal, possibly by 
preventing overfitting.  

The energy consumption estimations show that 
LSTM, the deep learning approach, is the most energy-
intensive method by far. The best-performing LSTM 
model consumed 2840 times more energy during 
training, and 126 times more energy during prediction, 
than the best-performing LR model (Table 1, Figure 3).  

Figure 2: Flowchart showing methodology (a) and 
sliding window method (b), where t is the current time, n is 

the size of the sliding window, and m is the prediction 
horizon length. For example, when using a sliding window of 
3 hours to predict the value in 1 hour’s time, n and m would 

be equal to 3 and 1 respectively. Thus, prediction of the value 
at t + 1 would rely on values at t, t – 1, and t – 2.   
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Table 2: Predictions using linear regression, with a 19-
hour sliding window, for a variety of prediction horizon 

lengths. 

 
Prediction Horizon MAE RMSE 

T + 1 0.235 0.574 

T + 3 0.788 1.322 

T + 6 1.292 1.997 

T + 9 1.584 2.432 

T + 12 2.120 3.228 

T + 15 2.376 3.613 

T + 18 2.673 4.111 

T + 21 2.923 4.529 

T + 24 3.219 4.981 

 

Model Hyperparameters Sliding 

window 

size 

MAE RMSE Energy ratio 

(training) 

Energy ratio 

(predicting) 

Linear regression N/A 3 hours 0.239 0.579 1941 88 
N/A 12 hours 0.239 0.581 2951 27 
N/A 19 hours 0.235 0.574 2840 126 
N/A 24 hours 0.237 0.577 1268 31 

Random forest 

 

estimators: 40, max_depth: 7 3 hours 0.316 0.583 137 49 
estimators: 45, max_depth: 6 12 hours 0.332 0.603 67 47 
estimators: 20, max_depth:6 24 hours 0.35 0.612 2 2 

XGBoost 

 

estimators: 100, max_depth: 4, learning rate: 0.1 3 hours 0.327 0.602 278 13 
estimators: 100, max_depth: 2, learning rate: 0.1 12 hours 0.361 0.623 358 15 
estimators: 95, max_depth: 2, learning rate: 0.1 24 hours 0.372 0.630 79 28 

LSTM 

(optimiser: adam, 

loss: ‘mae’) 

units: 39, learning rate: 0.001, batch size: 24 3 hours 0.487 0.821 1.9 0.2 
units: 42, learning rate: 0.001, batch size: 24 12 hours 0.423 0.684 0.9 0.8 
units: 42, learning rate: 0.001, batch size: 24 19 hours 0.398 0.649 1 1 
units: 45, learning rate: 0.001, batch size: 24 24 hours 0.439 0.710 1.4 0.9 

Linear regression 

[13] 

N/A 3 hours 0.333 0.579 / / 

Random forest [13] Not specified 3 hours 0.331 0.591 / / 

XGBoost [13] Not specified 3 hours 0.345 0.617 / / 

LSTM [13] Not specified 3 hours 0.292 0.574 / / 

Table 1: Comparative results for 1 hour prediction of traditional machine learning methods and those reported in [11]. 
Energy ratio is defined by the energy consumption of a model during training or predicting divided by that of the best 

performing LSTM solution. 

Figure 3: Comparison of training and prediction energy 
consumption for each approach using best-performing 

parameters. 
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Although the other methods are more energy intensive 
than LR, they are still much more sustainable than LSTM. 
Indeed, compared to LSTM, the best RF regression and 
XGBoost  models consumed 137 and 278 times less 
energy during training, and 49 and 13 times less energy 
during prediction, respectively. 
 

Figure 3 also highlights the difference in energy 
consumption during training and prediction. For LR and 
XGBoost, the energy consumption during training was 
roughly twice that during prediction. However, this 
figure is 15 times for RF regression, and 44 times for 
LSTM. 

Linear regression also performed well when 
tested over longer prediction horizons. Table 2 reveals 
that for this model, MAE and RMSE increase linearly with 
the length of the prediction horizon within the range of 
12 to 24 hours. These MAE values can be compared to 
the widths of PM2.5 bands used by the UK government 
to inform public health advice (Figure 1). The narrowest 
of these bands has a width of 4 µgm-3, suggesting that 
predictions up to 24 hours are sufficiently accurate to 
support decision making (Figure 4(a)). Further analysis 
shows that over 80% of the model predictions are in the 
correct band across all prediction horizon lengths. 
However, one should note that currently the model 
performs worse for values in higher bands (Figure 4(b)). 
This can be explained by the fact that, as highlighted on 
Figure 1, the dataset that was used for this study lacked 
data points in higher bands, which limited model 
learning in these areas. Fortunately, this could be 
remedied by using data collected during a longer period 

and applying dataset balancing strategies. Note that in an 
earlier analysis of this study, preliminary findings were 
presented at the 2024 World Congress on Civil, 
Structural, and Environmental Engineering in London, 
UK [24]. 

 
4. Conclusion 

Despite the adoption of deep learning solutions in 
many application areas, this study suggests that linear 
regression is particularly appropriate to predict air 
pollution levels in London. Not only does this approach 
outperform its competitors in terms of MAE and RMSE, 
but also it consumes the least energy by a significant 
margin for both training and predicting. In addition, its 
predictions for a horizon of up to 24 hours are expected 
to support decision making to reduce particularly 
harmful human exposure. Although further 
investigations should be undertaken, this study supports 
the aspirations that AI-based solutions are sustainable, 
affordable, and effective, and that their energy needs 
must be considered during development. 
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