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Abstract - In this paper, we introduce a method for analysing 
wastewater from the leather industry with a specific focus on 
determining the Chemical Oxygen Demand parameter, which 
plays a vital role in evaluating water pollution levels. 
Conventional methods for measuring it involve extensive 
laboratory analysis, sample preparation, and the usage of 
hazardous substances. To overcome these limitations, we 
propose a machine learning-based approach that employs 
nonspecific sensors and soft sensing techniques to derive 
indicators of wastewater quality. Our method leverages 
ultraviolet and visible spectroscopy measurements, which 
provide valuable insights into the light absorption 
characteristics of  the wastewater sample, enabling us to 
estimate Chemical Oxygen Demand. Importantly, our approach 
includes an analysis of the input wavelengths, allowing us to 
identify the spectra for accurate Chemical Oxygen Demand 
estimation. Once deployed, our method offers the potential for 
real-time monitoring systems of wastewater in leather 
production contexts, by eliminating the need for time-
consuming laboratory analyses. 

Keywords: Machine Learning, Industry 4.0, Soft Sensing, 
Wastewater, Chemical Oxygen Demand, Leather 
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The leather industry is highly water intensive and 
has an important environmental impact. Water is 
employed as a medium to convert raw hides and skin 
into leather. In most cases, wastewater produced by the 
processes in the leather industry is dangerous to the 
environment. Tannery wastes are characterised by high 
Biochemical Oxygen Demand (BOD), high Chemical 
Oxygen Demand (COD), high pH, high chromium, and 
high dissolved salts. Chromium is widely used in chrome 
tanning processes [1]. Discharging contaminated 
effluent into a receiving water body could spread 
diseases to human beings [2]–[5]. In a case study of the 
groundwater quality around leather industries in South 
India is reported a high level of pollution around the 
tanneries [1]. This fact suggests the importance of 
studying new ways of analysing water quality in 
wastewater generated by leather industries. In Italy, in 
particular, in Tuscany, wastewater coming from 
tanneries is treated by external Wastewater Treatment 
Plants. Here, dangerous compounds are replaced with 
environmentally safe fluids waste and solid waste. Some 
parameters used to establish if a leather industry is 
complying with certain limits are pH, Total Suspended 
Solids (TSS), COD, BOD, total chlorides, total sulphates, 
ammonia, and chromium. The same parameters are also 
used by Wastewater Treatment Plants to establish the 
charge that a tannery should pay. Similarly, the 
European Union uses these measures to define certain 
objectives that each member state has to achieve to 
satisfy specific water quality standards. The guidelines 
are published in 2001 by the European Co-operation in 
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the field of Scientific and Technical research (COST) and 
refer to the constraints the effluent of Wastewater 
Treatment Plants has to satisfy [6], [7]. 

The COD is defined as the quantity of oxygen 
required to oxide the organic component of a water 
sample using a strong oxidising agent, such as 
dichromate [8]. It is expressed in milligrams per litre 
(mg/l), which is the mass of oxygen consumed for a litre 
of solution. It is considered one of the most important 
parameters to evaluate the degree of pollution of 
wastewater by the Association of Analytical Chemists 
[9]. Currently, the method used to measure COD in 
wastewater is titration, which involves the usage of a 
strong chemical oxidant [10]. Among others, the most 
commonly used oxidant is potassium dichromate, in 
combination with sulphuric acid. This method is the 
standard method to measure COD according to the 
American Public Health Association (APHA) [7].  

However, the conventional method has some 
drawbacks: it requires a long time in order to obtain the 
result and it requires manual operations. Furthermore, 
the chemicals used to make the reactions are dangerous 
for the environment. There are alternatives to the 
titrimetric analysis, such as the colorimetric 
measurement. Even if it is considered faster and easier 
to perform, it still needs the usage of dangerous 
chemicals [11], [12]. During the last decades, standard 
methods for chemical measuring have been aided by a 
new technique named chemometrics, a data-driven 
approach which allows the extraction of information 
from chemical systems [13]. However, only in the last 
years’ real chemometrics applications have become 
feasible, thanks to the large availability of sensors. A 
possible application of chemometrics is through soft-
sensing. A soft sensor allows obtaining a particular 
measure from nonspecific sensors. Soft-sensing is 
particularly useful when some relevant product qualities 
or quantities are difficult to be measured due to technical 
or economic issues. In the context of chemometrics, the 
usage of the soft-sensing technique allows for obtaining 
water quality parameters, such as COD or BOD, in a 
manner of seconds instead of hours using nonspecific 
sensors. In this way, the usage of toxic, corrosive and 
dangerous reagents is avoided. 

In this paper, we propose an automatic data 
analysis approach for the analysis of wastewater. The 
proposed method, built over our preliminary work [14], 

                                                 
1 The official web page of ARCHA S.R.L., where can be 

found further details, is https://www.archa.it/ 

leverages soft sensing and machine learning, allowing 
the determination of a water quality indicator using 
nonspecific sensors. In particular, the method can 
determine the COD by exploiting an optical sensor (a 
spectrophotometer), using the ultraviolet and visible 
(UV-Vis) wavelengths. To build the soft sensor different 
machine learning models have been compared. 
Moreover, we integrate the previous work providing an 
analysis of the wavelengths exploited by the model to 
estimate the COD. Data used to train the models are 
provided by ARCHA S.R.L.1, a chemical laboratory located 
in Pisa, Italy. The dataset used for our experiments 
contains samples from three tanneries that refer to 
fourteen distinct stages of the leather production 
process. We run experiments exploiting machine 
learning models with different preprocessing settings. 
We compute the logarithmic COD to obtain a normal 
distribution of data, we reduce the dimensionality of the 
input through the Principal Component Analysis and we 
train machine learning models to find a correlation 
between the sensor data and the COD. We compare 
Multilinear Regression Model, Random Forest, Support 
Vector Regressor, K-Nearest Neighbours and Multilayer 
Perceptron. The validation is made through a double K-
Fold Cross-Validation. We use the coefficient of 
determination, Root Mean Squared Error, and Average 
Absolute Relative Error as evaluation metrics to 
compare the performances of the different models. 
According to our results, the Multilayer Perceptron 
provides better estimation than other models. It can be 
observed that, after the model training, our approach 
does not require any (time-expensive) laboratory 
analyses. These results open to the use of nonspecific 
sensors, that do not require the use of dangerous 
chemicals and complex workflows, in the context of real-
time monitoring of wastewater of leather industries. 

 
2. Related Work 

As stated by the American Public Health 
Association (APHA), the standard method for 
determining COD is the dichromate method with the use 
of potassium dichromate [7]. This conventional method 
has some drawbacks, such as being time-consuming, the 
usage of a strong oxidant, and troublesome manual 
operations. 

During the last years the application of 
chemometrics, i.e. the usage of data-driven models for 
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extracting information from chemical systems, is 
increasing thanks to the large availability of sensors and 
Beer-Lambert's law [15]. It states that there is a 
correlation between the absorption spectrum and the 
concentration of a certain substance [15]. Different 
pollutants have different absorption characteristics. 
Therefore, by exploiting Beer-Lambert's law it is 
possible, based on a theoretical basis, to extract the 
concentration of pollutants in water. However, a linear 
relationship needs strict requirements and it is difficult 
to obtain. Indeed, the effluents often contain mixed 
chemicals, and it is difficult to detect all the components 
simultaneously through the absorption spectrum. For 
this reason, machine learning models, able to detect 
complex non-linear relationships, are largely adopted 
[16]. 

To the best of our knowledge, this is the very first 
study for COD estimation in the context of leather 
industry wastewater. Related works can be found, but 
they are related to Wastewater Treatment Plants and not 
directly applied to the estimation of COD in wastewater 
coming from the different processes involved in leather 
production. Most of the works found in the literature 
exploit Multi-linear Regression to provide COD 
estimation from spectroscopy [17]–[20]. Others used 
Artificial Neural Networks as a machine learning model 
to find the correlation between the absorption spectrum 
and COD [19], [21]. Every author but one used the UV-Vis 
spectrum as input for the model [17], [19], [21], the other 
one compared the UV-Vis spectrum with the Near 
Infrared (NIR) wavelengths [20]. First solutions adopted 
a single wavelength for the estimation of the COD [22], 
however, the complexity of the wastewater, particularly 
in the context of industrial wastewater, makes it difficult 
to find a correlation using a single or few wavelengths. 

Alam developed a method based on UV-Vis 
spectrometry for the determination of COD in a 
Wastewater Treatment Plant [17]. His method consists 
in building a linear regression model able to the most 
sensitive wavelengths using a 10 nm bandwidth at 
different wavelengths and correlating them with the 
COD measurement. The spectrophotometer used by the 
author was able to detect absorbance values from 
wavelengths starting from 180 nm to 900 nm with a 20 
nm step size [17]. 

Chen et al. used the soft-sensor technique to 
determine three different measures related to water 
quality, i.e. the nitrate, the COD and the turbidity [18]. 
They exploited the UV-Vis absorption spectrometry 
together with the analysis of the wavelengths in order to 

estimate the nitrate, the COD and the turbidity 
simultaneously [18]. According to the measure they 
would like to estimate, they leverage different 
wavelengths. A set of wavelengths were first provided to 
a Partial Least squares Regression (PLSR) model in order 
to obtain the estimated turbidity. On the other hand, to 
establish the approximation of the COD, the input to the 
PLSR model was previously preprocessed by the 
Multiplicative Scatter Correction (MSC) method, which 
removed the turbidity interference. To provide the 
estimation of the Nitrate, the spectral difference between 
the COD spectrum and the turbidity-compensated 
spectrum was performed. The absorption spectrum, 
after the COD compensation, was selected and the nitrate 
concentration has been obtained after applying the PLSR 
algorithm [18]. 

Fogelman et al. exploited a Multilayer Perceptron 
(MLP) to build a soft-sensor able to estimate COD values 
for wastewater samples [19]. They extracted a limited 
number of features from the full spectrum of wastewater 
samples obtained through ultraviolet (UV) spectroscopy. 
Then, using the key features of the spectral absorbance 
pattern, they trained an MLP. They validate the model by 
comparing the results of their MLP against a traditional 
Multiple Linear Regression (MLR) [19]. 

Charef et al. presented a soft sensor used to extract 
the concentration of COD from the UV spectrum, 
temperature, pH, and conductivity [21]. In the 
preprocessing phase, they selected the most relevant 
variables using the Principal Component Analysis. Then, 
the selected 15 variables are used to train a Multilayer 
Perceptron that provides the estimated COD [21]. 
However, their results are related to a wastewater 
treatment plant, which in general has lower values of 
COD. Thus, their results are not comparable to ours. 

Sarraguça et al. compared two methods for the 
determination of three water quality parameters, 
namely COD, Nitrate concentration, and TSS [20]. The 
first method exploits the UV-Vis spectrum, while the 
second one leverage the NIR spectrum. In both cases, a 
preprocessing phase was performed to select the most 
relevant wavelengths through the bootstrap method. 
The selected wavelengths were used to train a Partial 
Least Squared Regression model [20]. Also in this case 
their results refer to a wastewater treatment plant and 
are not comparable to ours. 

 

3. Methodology 
For the purpose of training and validation of our 

machine learning models for the estimation of COD, we 
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collected a dataset of 151 samples using a UV-Vis 
spectrophotometer in three tanneries, and each sample 
refers to a specific phase of the leather production 
process. The spectrophotometer provides the 
absorbance value for different wavelengths, in the UV 
and Visible spectrum, from 200 nm to 730 nm with 
intervals of 2.5 nm (hence, each sample report 
information about 212 different wavelengths). An 
example of three different measurements of the 
absorption spectrum is provided in Figure 1. 

Each sample is associated with its ground truth, its 
COD, as it is measured in ARCHA. Other metadata for 
each sample are the phase and the leather industry. 
ARCHA provided three incremental releases of the 
dataset. The first version contains 89 samples, the 
second one has 119 samples, and the last has 151 
samples. Each sample is a vector in a 212-dimensional 
space. In this context, where the number of samples is 
lower than the dimension of the space, we may incur the 
curse of dimensionality [23]. It indicates that the number 
of samples necessary to estimate an arbitrary function 
grows exponentially with respect to the dimensionality 
of the function itself. Hughes studied the behaviour of the 
predictive power of a model, fixing the dataset size and 
varying the size of the dimensions. As the dimension 
increases, the performance improves up to a certain 
dimension, after which the performance deteriorates 
[24]. 
 

 
Figure 1: Absorbance value at different wavelengths for three 

values of COD 

 
Since our dataset has 151 samples spread over 212 

dimensions, and because of this it may be too "sparse" 

for our purposes, we tested two techniques for 
dimensionality reduction: (i) a "naive" solution that 
consists in selecting the k absorbance wavelengths with 
the highest variance (hereafter k-AV), and (ii) the 
Principal Component Analysis (PCA) using the singular 
value decomposition. As will be discussed in more detail 
in Section 4, since the ground truth has a positive skew 
distribution, we use its logarithm in our experiments. 
Although estimating the COD from a spectrophotometer 
sample is a regression task, which is known to be 
insensitive to standardisation and normalisation, we use 
anyway the standardization of the dataset as it improves 
the stability and the convergence of the algorithms [25]. 

Due to the lack of availability of public 
benchmarks, it is not possible to compare our results 
against other works in the literature. For this reason, we 
focus this work on the comparison of five different 
machine learning models, namely linear regressor, 
random forest, Support Vector Regressor (SVR), K-
Nearest Neighbours (KNN), and Multilayer Perceptron 
(MLP). To ensure the robustness and the generalisability 
of our result, we use a double 5-fold cross-validation to 
evaluate the performance of our models. In this 
approach, the data are first split into k folds, and then an 
inner k-fold cross-validation is performed on each of the 
external k folds. The outer loop is used to assess the 
performance of the model (test set), while the inner loop 
is used to optimise the model’s hyperparameters. This 
allows us to evaluate the models’ performance on new 
data (with a test set comprising the entire dataset) that 
was not used either to train or to optimise their 
hyperparameters and provides a more reliable 
estimation of their performance compared to a standard 
hold-out approach. We select the hyperparameters by 
launching a grid search for all the models except the MLP, 
for which we use a random search over the 
hyperparameter space. 

We evaluate our models using the coefficient of 
determination, the Root Mean Squared Error and the 
Average Absolute Relative Error metrics. The coefficient 
of determination (also known as 𝑅2 score) is a statistical 
measure that explains the variation of one dependent 
variable that is predictable from the independent 
variables. A score of 1.0 us the best possible score. Its 
value can be negative because the model can be 
arbitrarily worse. As an example, a model that always 
provide the expected value of y as estimation, without 
considering the input features, has a 𝑅2 value of 0. If 𝑦�̂� is 
the predicted value of the i-th sample and 𝑦𝑖  is the 
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corresponding true value for total n samples, the 
estimated coefficient of determination 𝑅2 is defined as: 

 

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (1) 

 

where �̅� =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 , and ∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1 = ∑ 𝜖𝑖

2𝑛
𝑖=1 . 

 
The Root Mean Squared Error (RMSE) is the 

average squared difference between an estimated and 
the actual value. It is used as a measure of the quality of 
an estimator. It is always positive and as it decreases, the 
better the model. It can be obtained as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (2) 

 
 
where yi is the actual value, 𝑦�̂� is the estimated one 

and n is the number of samples. 
The Average Absolute Relative Error (AARE) 

provides the performance index in terms of the 
predicting measure and the distribution of the 
prediction error. It is defined as: 

 

𝐴𝐴𝑅𝐸 =
1

𝑁
∑|

𝑡𝑖 − 𝑝𝑖
𝑡𝑖

× 100|

𝑁

𝑖=1

 (3) 

 
 
Where 𝑡𝑖 represents the observed measure for the 

i-th sample, 𝑝𝑖  is the estimated measure for the i-th 
sample, 𝑁 is the total number of samples. The smaller is 
the AARE value, the better the performance. 

 
4. Experiments 

The difficulty of the estimation of the COD of 
wastewater using the absorbance from a single or few 
wavelengths lies in the fact that wastewater is made up 
of multi-components. Indeed, industrial wastewater, in 
particular in the case of tanneries, contain high pollution 
characteristics such as suspended solids and high 
concentration of chloride, ammonia, and chromium [1], 
[26]–[28], which are implicitly estimated in terms of 
COD, TSS, electrical conductivity and pH indexes. 

 
Figure 2: Distribution of COD values 

 

 
Figure 3: Distribution of logarithmic COD values 

 

In our dataset, the distribution of the COD values is 
strongly positively skewed, as shown in Figure 2. It is 
possible to observe that most of the samples have a COD 
below 10000 mg/l. In order to obtain a better 
distribution of data with respect to the COD, we used its 
logarithm in the training of our models, which, as shown 
in Figure 3, has a Gaussian-like distribution. This 
transformation reduces the skewness of the data and 
makes it more symmetrical. In experiments performed 
with and without this transformation, we observe that 
the performances of the models are improved by taking 
the logarithmic COD values, for example, the MLP 
performance increases from 0.64 to 0.68 in the 𝑅2 
metric. For some models this transformation allows 
them to align with their assumption: for example, the 
linear regression assumes that the data follows a 
Gaussian distribution. While the transformation of the 
target variable improved the performance of the models, 
we also need to consider the size of the dataset. Figure 4 
shows the results of the machine learning model having 
the best performance in terms of 𝑅2 in the different 
releases of the dataset. Here, it is possible to observe how 
the increment in the number of samples leads to better 
model performance. 
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In all three releases of the dataset, we observe the 
strongly positive skewness of the COD values. The first 
version contained 89 samples. The COD values ranged 
from 66 mg/L to 19200 mg/L. The second one contained 
119 samples, the COD values ranged from 66 mg/L to 
92900 mg/L. The last release contains 151 samples and 
the COD values range from 66 mg/L to 92900 mg/L. Note 
that the periodical upgrade of the dataset is required by 
the long time necessary to collect samples, in particular, 
to extract the COD through laboratory analysis. 

 
Figure 4: Performance improvement of the machine learning 

models, in terms of R2, when increasing the number of 
samples. 

  

 Indeed, the estimation of the COD from the 
conventional methods is a time-hungry operation. Since 
the processes in the leather industry involve the usage of 
different chemicals in different quantities that could 
increase the COD value, the experiments conducted with 
the last release of the dataset, consider also the process. 
To represent this categorical variable, we exploit the 
one-hot representation. With respect to the trials that do 
not use this variable, we observe an increment in the R^2 
(from 0.71 to 0.73) and the reduction of the RMSE (from 
9393 mg/l to 8563 mg/l). For this reason, we consider 
the phase an important variable for COD estimation. The 
final configuration, after the preliminary results, for the 
final results is a 29-dimensional vector 𝑋 ∈ 𝑅29, where 
15 are the absorbances extracted by the PCA and the last 
14 are the one-hot encoding representation of the 14 
phases. Experiments are conducted using the scikit learn 
and the PyTorch libraries. 

Hereafter, we provide a list of the machine 
learning models used to estimate the COD, along with 
their respective hyperparameters. Additionally, we 
include the relative range of values and the number of 
sampled values in that range (# values). They refer to the 
values used for the model selection phase using the Grid 
Search. 

 

 Linear model 

Table 1. Hyperparameters and values for the Linear model. α 
is the coefficient for Tikhonov regularization. 

 Range # values 
α [1x10-15, 1x1010] 20 

 
 Random Forest 

Table 2. Hyperparameters and values for the Random Forest 
model. max_depth is the maximum depth of the tree. 

min_samples_leaf is the number of samples required to be at a 
leaf node. min_samples_split is the minimum number of 

samples required to split an internal node. n_estimators is the 
number of tress in the forest. criterion is the function used to 

measure the quality of the split. 

 Range # values 
n_estimators [10, 50] 5 
max_depth [1, 20] 20 
min_samples_leaf [1,30] 5 
min_samples_split [2,30] 5 

 
 Values 
criterion [poisson, friedman_mse, 

squared_error, absolute_error] 

 
 Support Vector Regressor (Gaussian 

Kernel) 

Table 3. Hyperparameters and values for the SVM model. C is 
the regularisation parameter. γ is the radius of the kernel for 
the support vectors. ε is the size of the margin for which no 

penalty is given to errors. 

 Range # values 
C [1x10-10, 1x103] 10 
γ [1x10-10, 1x103] 10 
ε [0.05, 0.5] 5 

 
 K-Nearest Neighbours 

Table 4. Hyperparameters and values for the KNN 
model. K is the number of samples exploited to make a 
prediction. metric is the function used to calculate the distance 
between the data points. 

 Range # values 
K [1, 30] 10 
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 Values 
metric [euclidean, minkowki, 

manhattan] 

 
 Multilayer Perceptron (MLP) 

Table 5. Hyperparameters and values for the MLP model. 
learning rate is the step size to update the MLP’s parameter. 
units is the number of units of the hidden layer. momentum 

controls the influence of previous parameter updates during 
the training. weight decay is the regularization parameter. 
act_fun is the non-linear function applied to the output of a 

unit in a MLP. 

 Range # values 
learning rate [1x10-5, 1x10-2] 10 
units [20, 800] 10 
momentum [0],[0.6, 0.9] 5 
weight_decay [0, 0.3] 5 

 
 Values 
act_fun [Sigmoid, Tanh, ReLU] 

 
5. Results 

We compared the performance of 5 machine 
learning models on the dataset provided by ARCHA 
relatives to different tanneries in Italy. Table 6 contains 
the results in the training, validation and test set for the 
RMSE, and in both the training and test sets for R2 and 
AARE. The reported test results refer to the average of 
five different iterations, belonging to the outer set from 
the double 5-fold cross-validation technique. Moreover, 

the table contains the standard deviation in the format 
(±std) for R2 and AARE. 

The null model is an estimator which always 
provides as estimation the average of the COD of the 
training set. It is used as a baseline. It is possible to 
observe that all the models have significantly better 
performance with respect to the baseline, i.e. the null 
model. The model having the best performance is the 
MLP both in terms of RMSE and 𝑅2. The SVR with a 
Radial Basis Function (RBF) kernel outperforms the 
other models in terms of AARE. However, all the models 
with non-linear capabilities have similar performances, 
with a 𝑅2 higher than 0.70 in the test set. On the other 
hand, the linear regressor has lower performance due to 
the incapability to include nonlinear relationships. We 
have to consider that collected data come from a context 
where the wastewater is highly polluted. They are 
relative to different processes, each characterised by the 
usage of different chemical agents and the presence of 
suspended solids. The concentration of the chemical 
species affects the absorbance: higher concentrations 
result in stronger absorbance signals [16]. Indeed, 
involving the process in the estimation of COD allows us 
to obtain a more reliable estimation, since each process 
exploits different chemicals, even if the samples for each 
process are poor (a mean of around 10 samples for each 
process). Due to these considerations, the current results 
satisfy the expectation of ARCHA experts.  

 
 
 
 

Model 

RMSE  

training (mg/l) 

RMSE 

validation (mg/l) 

RMSE  

test (mg/l) 

R2 

training 

R2  

test 

AARE 

training 

AARE 

test 

Null model 14484.63 14093.06 14165.22 0 (±0) 
-0.01 

(±0) 

15.44% 

(±0.24%) 

17.14% 

(±0.94%) 

Linear regressor 5754.54 8684.29 13638.93 
0.81 

(±0.08) 

0.63 

(±0.10) 

6.40% 

(±0.89%) 

8.14% 

(±0.87%) 

Random forest 6529.55  8300.26  9768.54 
0.91 

(±0.07) 

0.70 

(±0.08) 

3.43% 

(±0.71%) 

7.08% 

(±0.59%) 

SVR (RBF 

kernel) 
3619.32  8215.56  9604.72  

0.81 

(±0.07) 

0.71 

(±0.08) 

3.95% 

(±0.87%) 
6.26% 

(±1.13%) 

KNN 9082.29  8579.17  9192.89  
0.81 

(±0.07) 

0.71 

(±0.07) 

5.24% 

(±0.47%) 

7.02% 

(±0.53%) 

MLP 4487.51  6833.72  8563.10 
0.93 

(±0.08) 
0.73 

(±0.10) 

3.11% 

(±0.54%) 

7.65% 

(±0.70%) 

 
 

 
     

Table 6: Results of different machine learning models for the estimation of COD. 
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6. Model interpretation and discussion 
Ultraviolet (UV) - Visible (Vis) spectroscopy is a 

technique used to measure the absorption of light by 
matter. The main difference between the UV and Vis 
spectroscopy is the wavelength range of light that they 
measure. UV spectroscopy measures the absorption of 
ultraviolet light, which has a shorter wavelength and 
higher energy than visible light. Vis spectroscopy, on the 
other hand, measures the absorption of visible light, 
which has a longer wavelength and lower energy than 
ultraviolet light. [29]  
 

 
Figure 5: In evidence the most important wavelengths 

selected by Random Forest over the mean of the signals. 

 
  The measurement of Chemical Oxygen Demand 
(COD), which quantifies the concentration of organic 
compounds in water, can be facilitated through the 
utilization of UV spectroscopy. This is because organic 
compounds in water have the ability to absorb UV light, 
and the degree of absorption is directly related to the 
concentration of these compounds within the water 
sample. However, it is crucial to acknowledge that 
wastewater samples can potentially contain multiple 
absorbing species. Moreover, the presence of turbidity in 
the wastewater sample may significantly influence the 
accuracy of measurements. 
  It is important to note that the absorbance 
observed within the long wavelength visible range (440 
nm to 800 nm) can be attributed to turbidity or to 
coloured compounds that absorb at visible spectrum. 
The presence of these in the sample can complicate the 
determination of organic compound concentrations. 
  In order to provide an explanation of the model's 
behaviour, it is necessary to consider the specific 
wavelengths used for its predictions. To achieve this, we 
leverage the random forest model, which enables the 

determination of the most relevant features. Figure 5 
showcases the most important wavelengths used to 
estimate the COD by the random forest model. The 
presented signal represents the mean of the dataset 
signals. The model focuses on the UV wavelengths range 
spanning from 200 nm to 225 nm, as well as around 254 
nm and around the 720 nm spectrum. The importance 
attributed by the model to these wavelengths aligns with 
the absorption characteristics of wastewater and the 
expert opinions. This analysis highlights the reliability of 
the model’s estimation, as its predictions are based on 
wavelengths where organic compounds absorb light. 
Additionally, the focus of the model around the 720 nm 
wavelength is justified by the possible presence of 
turbidity and coloured compounds.  
 
7. Conclusion 

This work presents a novel soft sensor to estimate 
the COD of leather industrial wastewaters, that leverages 
a UV-Vis spectrophotometer and machine learning 
models. For the purpose of its development, we 
considered and compared different machine learning 
models that correlate the acquired spectra with the 
monitored parameter (COD). Specifically, we consider 
linear model, random forest, SVR, KNN, and MLP. The 
obtained results show that the MLP performs better than 
other models. However, all the selected models are able 
to estimate the COD with good performances. Our 
experiments also show the importance of the number of 
samples, and the importance of the dimensionality 
reduction. Moreover, we provide an analysis of the 
predictions provided by the Random Forest. These are 
based on specific wavelengths that are in accordance 
with ARCHA experts. 

Future works will focus on the enlargement of the 
dataset, also through data augmentation techniques. In 
this way, it would be possible to train a model also on a 
single phase of the leather production process. We will 
also train a new model able to analyse the trend  of the 
signal, exploiting Convolutional Neural Networks and 
Recurrent Neural Networks. Moreover, we will also 
focus on the problem of estimation of other water quality 
parameters such as the Total Suspended Solids (TSS) and 
the Biochemical Oxygen Demand (BOD). Beyond this, we 
plan to validate our soft sensor in some leather 
production plants, with the purpose of extending the 
dataset and of analysing in real-time the level of 
pollutants in the different production phases, with the 
purpose of identifying best practices in the production.  
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