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Abstract - Permeable Reactive Barriers represent an innovative 
remediation technique of contaminated aquifers. Three 
geometric configurations are encountered in the literature: a 
continuous wall, a funnel-and-gate system, and a caisson 
configuration. The present paper is focused on the design of the 
second and third geometric configurations and presents an 
analytical solution of the flow in a Permeable Reactive Barrier 
based on the Schwarz-Christoffel transformation. This 
analytical solution is coupled to residence time calculations to 
define a methodology of design taking into account the most 
important parameters on the design of a PRB: cut-off width, 
slenderness of the reactive cell, and hydraulic conductivity. 
Finally, the study provides a guidance diagram for the design of 
funnel-and-gate or caisson configurations, as well as a case 
study.  
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Nomenclature 
α1, α2, α3, α4 External angles in the Schwarz-

Christoffel transformation 
γ  Complex number in the Schwarz-

Christoffel transformation 
ϕ Velocity potential 
𝜙𝑤
𝑢
− 𝜙 𝑤

𝑑
Difference of velocity potential 

between two wells in an infinite 
domain [m] 

𝜙 𝑣
𝑑
− 𝜙 𝑣

𝑢  Difference of velocity potential 

between two points in a uniform 
velocity field [m] 

Ψ Stream function 

D Thickness of the aquifer [m]  
f Schwarz-Christoffel transformation 
g  Inverse of the Schwarz-Christoffel 

transformation 
hu-hd Hydraulic head loss in a filter [m] 
kfilter Hydraulic conductivity of a filter [m/s] 
Lfilter Length of a filter [m] 
q  Flow rate per meter of depth of 

aquifer [m2/s] 

Q  Total flow rate in a filtering gate 
[m3/s] 

R Half-length of the cut-off wall [m] 

Rd Radius of a drainage element [m] 

Sfilter Cross-surface of a filter [m2] 

T Residence time [s] 

V0 Initial velocity [m/s] 

χA, χB, χC, χD Real constants in the Schwarz-
Christoffel transformation 

χS  Abscissa of the stagnation point (z-
diagram) [m] 

yp Half-width of the capture zone 
entering a well (z-diagram) [m] 

Yp  Half-width of the capture zone 
entering a PRB (z’-diagram) [m] 

YS  Ordinate of the stagnation point (z’-
diagram) [m] 

1. Introduction
Permeable reactive barriers (PRBs) constitute a

passive remediation technique for the treatment of 
polluted groundwater [1]. Their principle relies on the 
exploitation of hydraulic gradients to treat the 
groundwater in a reactive media able to degrade, adsorb 
or precipitate the pollutants.  

Three main geometric configurations are available 
in the literature: (a) a continuous wall (CW) composed of 
reactive trenches or injection wells [1]; (b) a funnel-and-
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gate configuration (F&G) composed of two impermeable 
walls that direct the contaminated plume towards a 
filtering gate [2]; and (c) a caisson configuration (CC) 
similar to the previous one, but in which the flow in the 
filtering gate is in the upward direction [3]. 

As regards the implementation of each 
configuration, continuous walls represent the common 
type of PRB [1]. A design methodology is dedicated to 
this configuration and relies on the residence time of 
pollutants in the reactive media [4, 5]. On the contrary, 
only few practical tools are available in the literature for 
the design of funnel-and-gate PRBs and they are 
particularly focused on the hydraulic behaviour of PRBs 
[6-8]. However, the design of such PRBs relies on three 
technical aspects: (a) the reactive media must be 
appropriate to the pollutants, (b) the filters’ size must be 
large enough to ensure a sufficient residence time [9-11], 
and (c) the reactive material must have a sufficient 
hydraulic conductivity to prevent any bypass of the 

system. The first aspect is a key issue in the design of 
PRBs and a particular attention has to be dedicated to the 
selection of the reactive or sorbent material when 
installing any PRB system [12]. The present paper will 
consider that the reactive media is selected adequately 
and the compatibility with the contaminant is not an 
issue. 

Another key aspect for the design of the technology 
is an adequate site characterization [13]. Hydrologic 
characteristics of groundwater flows represent a 
challenge for the design of PRBs [14]. Assuming that the 
reactive material is adequately selected from laboratory 
tests, the two interdependent parameters for the design 
of PRBs are the residence time and the hydraulic capture 
width. Residence time refers to the contact time between 
the contaminated groundwater and the reactive media 
within the barrier. It ensures that the reactive barrier is 
large enough to meet regulatory requirements. 
Hydraulic capture width refers to the maximal width of 
the contaminated groundwater that can enter a filtering 
gate or go through a continuous wall. 

Numerical modeling constitutes the most popular 
option for the design of PRBs and commercial software 
products such as MODFLOW [15] and FLONET [16] are 
extensively used to evaluate the effect of PRBs on 
regional flows. Nevertheless, this approach is cost and 
time consuming. Moreover, the comparison of 
alternative methods or geometries needs the 
preparation of different numerical models, as performed 
by Hudak [17]. To face this problem, several authors 
have considered an analytic approach for preliminary 

design and optimization of PRBs. Thus, Craig and al. 
chose the Analytic Element Method (AEM) to represent a 
continuous wall in a homogenous aquifer [18]. Their 
model was based on an elliptical inhomogeneity placed 
in a uniform flow as a representation of a PRB. This 
approach constituted a first step in analytical modeling 
and provided useful tools for preliminary designs. To 
expand on the approximation of an elliptic geometry, 
Klammler and Hatfield investigated another approach 
based on conformal mapping and obtained solutions for 
flow fields around a rectangular continuous wall [19]. 
This approach has been later extended to funnel-and-
gate and drain-and-gate configurations [6,7] and the 
authors analysed the solutions for flow fields regarding 
widths and shapes of the capture zones under different 
scenarios. These anterior works are particularly useful 
for preliminary design of F&G, but they are mainly 
focused on hydraulic aspects of the design. As the 
residence time in reactive filters is an essential element, 
the originality of the present paper consists in 
considering the residence time as an additional criterion 
for preliminary design of permeable reactive barriers. 

 

2. Schwarz-Christoffel theorem 
The Schwarz-Christoffel theorem states that the 

interior of a closed polygon may be mapped into the 
upper half of a plane [20]. This transformation is 
illustrated in Fig. 1.a and b, where the function f 
transforms the real axis in the z-diagram into a polygon 
in the z’-diagram. The inverse transformation is 
represented by the function g. Eq. 1 represents the 
Schwarz-Christoffel transformation. 

 
𝑑𝑧′

𝑑𝑧
=
𝑑

𝑑𝑧
[𝑓(𝑧)] =

𝛾

(𝑥𝐴−𝑧)
𝛼1
𝜋⁄ ∙(𝑥𝐵−𝑧)

𝛼2
𝜋⁄ ∙(𝑥𝐶−𝑧)

𝛼3
𝜋⁄ ∙(𝑥𝐷−𝑧)

𝛼4
𝜋⁄ ⋯

  (1) 

 
where γ is a complex number in the z-diagram; f is 

a complex function;  xA, xB, xC, xD,… are real constants in 
ascending order of magnitude; α1, α2, α3, α4, … are 
external angles of the polygon. Considering α1=/π2; α2=-
π and α3=π/2, Eq. 1 becomes Eq. 2 and transforms the 
real axis (Fig. 1.c) into a polygon with two apexes at 
infinity (Fig. 1.d). In particular, this transformation 
states that a flow around a cut-off wall perpendicular to 
a uniform flow can be deduced from a uniform flow 
without any PRB. Indeed, the x-axis can be considered as 
a no-flow boundary condition for a uniform flow parallel 
to this axis in the z-diagram (Fig. 1.c). In the z’-diagram 



 

 18 

(Fig. 1.d), this no-flow boundary is transformed into the 
negative part of the x’-axis, two segments [AB] and [BC] 
along the y’-axis, and the positive part of the x’-axis. 
Considering [AB] and [BC] as the upstream and 
downstream sides of an half cut-off wall, the basic set of 
boundary conditions in the z-diagram is mapped over a 
more complex geometry in the z’-diagram. As the flow in 
the lower half of the z’-diagram (respectively z-diagram) 
can be deduced from the flow in the upper half by 
symmetry, the analytical solution will be established for 
Y>0 (respectively y>0).  

 
𝑑𝑧′

𝑑𝑧
=
𝑑

𝑑𝑧
[𝑓(𝑧)] =

𝛾∙𝑧

√𝑧2−𝑅2
    (2) 

 

where R is a real positive number equal to the half-
length of the cut-off wall. After integration (Eq. 3) and 
introduction of two set of images, f (z=0) = iR and f (z=R) 
= 0, the analytical expressions of the function f and its 
inverse function g are respectively given in Eq. 4 and Eq. 
5. 

 

 
Figure 1. Schwarz-Christoffel’s principle. 

 
 

𝑧′ = 𝑓(𝑧) = 𝛾 ∫
𝑧

√𝑧2−𝑅2
∙ 𝑑𝑧 + 𝐵   (3) 

 

𝑧′ = 𝑓(𝑧) = √𝑧2 − 𝑅2    (4) 
 

𝑧 = 𝑔(𝑧′) = √𝑧′2 + 𝑅2    (5) 

Introducing the real and imaginary part of complex 
numbers z = x+iy and z’ = X+iY, Eq. 5 can be rewritten as: 

 
(𝑥 + 𝑖𝑦)2 = (𝑋 + 𝑖𝑌)2 + 𝑅2    (6) 
 
Development and separation of the real and 

imaginary parts leads to the following system of 
equations where the origins in the z and z’-diagrams are 

0-R +R

+R

0

z’=f(z)

z=g(z’)

(z-diagram) (z’-diagram)

x

y

X

Y

z’=f(z)

z=g(z’)

(z-diagram) (z’-diagram)

x

y

X

Y

Interior of the polygon

Exterior of the polygon

xA xB
xC xD

A B C D
A B

C

D

a1

a2

a3
a4

p-a1

p-a2

p-a3

p-a4

Interior of the polygon

Exterior of the polygon

A B C A

B

C

(a): Polygon in the z-diagram (b): Polygon in the z’-diagram

(c): Half PRB in the z-diagram (d): Half PRB in the z’-diagram
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not considered in the domain (apex of the polygon in the 
z’-diagram): 

 

{
𝑥2 − 𝑦2 = 𝑋2 − 𝑌2 + 𝑅2

𝑥𝑦 = 𝑋𝑌
    (7) 

 
This system of equations is easily solved and leads 

to a fourth order polynomial whose roots are given in Eq. 
8. Considering that y is strictly positive in the upper half 
of the z-diagram, the expression of y is given in Eq. 9. 

 

𝑥 = 𝛿𝑋 ∙ √
𝑋2−𝑌2+𝑅2+√(𝑋2−𝑌2+𝑅2)2+4𝑋2𝑌2

2
 (8) 

 

𝑦 = 𝛿𝑋 ∙
𝑋𝑌

√𝑋2−𝑌2+𝑅2+√(𝑋2−𝑌2+𝑅2)
2
+4𝑋2𝑌2

2

  (9) 

 

where δX represent the sign of X. The previous 
equations are particularly interesting because they 
represent a flow around a cut-off wall. In the next 
section, the geometry will be complicated by permitting 
a flow across the cut-off wall at the origin. This additional 
boundary condition represents the filtering gate 
(reactor) 

 
2.1. Complex potential Ω around a PRB 

In the present model, the widths of the cut-off wall 
and the reactive zone are neglected in comparison to the 
dimensions of the regional groundwater flow. Moreover, 
the filtering gate is represented by a sink and a source 
located respectively upstream and downstream of the 
cut-off wall. This assumption is particularly interesting 
to represent the flow in the z’-diagram as a function of a 
simple geometry in the z-diagram. Indeed, if we consider 
a sink located at point A and another at point C in the z-
diagram (see Fig. 1.c), the image in the z’-diagram 
becomes a funnel-and-gate PRB.  

Considering a steady, uniform and irrotational 
flow in the z-diagram, Eq. 10 represents the velocity 
potential ϕ and the stream function Ψ. 

 

{
𝜙 = −𝑉0 ∙ 𝑥
𝜓 = −𝑉0 ∙ 𝑦

     (10) 

 
where V0 is a constant velocity parallel to the x-axis 

in the z-diagram. Considering a sink and a source of equal 

strength q respectively located at (-R,0) and (+R,0) in an 
initially static aquifer, the velocity potential  and the 
stream function ϕ are given in Eq. 11 [21]. 

 

{
𝜙 = −

𝑞

4𝜋
∙ 𝑙𝑛 (

(𝑥−𝑅)2+𝑦2

(𝑥+𝑅)2+𝑦2
)

𝜓 = −
𝑞

2𝜋
∙ (𝑡𝑎𝑛−1 (

𝑦

𝑥−𝑅
) − 𝑡𝑎𝑛−1 (

𝑦

𝑥+𝑅
))

 (11) 

 
where q is the flow rate per meter of depth of the 

aquifer (m2/s). According to the superposition principle, 
the addition of Eq. 10 and Eq. 11 gives the velocity 
potential and the stream function of a uniform flow 
influenced by a sink and a source. Replacing x and y by 
Eq. 8 and 9, we obtain the velocity potential and stream 
function around a PRB. This potential function has been 
introduced into Winplot-2d and the equipotential lines 
are illustrated on Fig. 2 for a cut-off wall of 160 m 
coupled with a sink and a source of 12 m2/d. This figure 
also illustrates the capture zone and the by-pass of the 
PRB (groundwater laterally away from the x’-axis, 
outside of the envelope curve). 

As regards the hydraulic design of a PRB, the width 
of the plume caught by the filtering gate constitutes the 
most important information to be known. To determine 
this width, we studied the envelope curve in the z-
diagram and considered its transformation by the 
function f. Looking at the stagnation points in the z-
diagram, three configurations can be observed 
depending on the magnitude of the flow rate q. These 
configurations are: (a) two stagnation points on the x-
axis (Fig. 3a), (b) a stagnation point at the origin, or (c) 
two stagnation points on the y-axis (Fig. 3b). In the last 
case, some flow occurs from the source to the sink 
(recirculation). Considering that the sink and the source 
are connected through the filtering gate, this 
configuration cannot be encountered on the field and the 
water always goes from the sink to the source via the 
reactor. In the z-diagram, the abscissas of the two 
stagnation points (xS in Fig. 3.a.) are given in Eq.12 and 
we can easily demonstrate that their images are located 
on the y’-axis of the z’-diagram. Their ordinates YS is 
given in Eq. 13. As Ys cannot be higher than R (half-length 
of the cut-off wall), the maximum flow rate q that can 
enter the filtering gate is 𝜋 ∙ 𝑅 ∙ 𝑉0. 
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Figure 2. Equipotential around a Permeable Reactive Barrier (bold) and sketch of flow lines (arrows). 

 
 

𝑥𝑆 = ±𝑅 ∙ √1 −
𝑞

𝜋∙𝑅∙𝑉0
    (12) 

 

𝑌𝑆 = ±√𝑅
2 − 𝑥𝑆

2     (13) 
 
Moreover, the formulation of the stream line 

towards the stagnation point in the z-diagram is given in 
Eq. 14 [21]. 

 

𝜓0 = −
𝑞

2𝜋
∙ (𝑡𝑎𝑛−1 (

𝑦

𝑥−𝑅
) − 𝑡𝑎𝑛−1 (

𝑦

𝑥+𝑅
)) − 𝑉0 ∙ 𝑦 = −

𝑞

2
 (14) 

 
Considering the limit of the stream function when 

𝑥 → −∞ (𝑜𝑟 𝑋 → −∞), we obtain the half-width of the 
capture zone entering the reactor (see Eq. 15 and Yp in 
Fig. 4.b.). 

 

𝑌𝑝 = 𝑦𝑝 = −
𝜓0

𝑉0
     (15) 

 

Combining Eq.14 and 15, we can demonstrate that 
the half width of the capture zone is proportional to q 
and inversely proportional to the initial velocity of the 
flow V0 (see Eq. 16). 

 

𝑌𝑝 =
𝑞

2∙𝑉0
      (16) 

 
To illustrate the displacement of the envelope curve 

as a function of the flow rate q, different values of q from 
0.1 to 1 m2/h are introduced in Eq. 14 and the solutions 
are provided on Fig. 4. For every single x∈├]-∞;χS], the 
corresponding ordinate y is calculated thanks to the 
Generalized Reduced Gradient method (GRG) due to the 
non-linearity of Eq. 14. The image of the envelope curve 
has then been calculated in the z’-diagram. The capture 
width Yp is smaller than the ordinate Ys of the stagnation 
point for small flow rates, whereas Yp is greater than Ys 
for high flow rates. Nevertheless, this illustration cannot 
yet be considered as a real flow net around a PRB as the 
flow rate in the reactor q is not a boundary condition, but 



 

 21 

is imposed by the geometry of the reactor and its related 
hydraulic head losses. As a consequence, the model is 

extended in the next section by considering the geometry 
of the reactor and its impact on the flow rate. 

 

 
 Figure 3. Uniform flow past a sink and a source of equal strength. 
 

 
Figure 4. Envelope curves in the z and z’-diagrams. 

 
2.2. Flow rate in a filtering gate 

The previous representation of the filtering gate 
means that the velocity potentials are respectively set to 
-∞ and +∞ at the sink and the source. This assumption 
represents a bias because the velocity potential must be 
a continuous function across the reactor and the values 
at the entrance and the exit must be finite. To be more 
realistic, we considered the radius rw of two wells 
representing the sink and the source in the z-diagram. 
Thus, the velocity potentials upstream (𝜙𝑢

𝑤) and 

downstream (𝜙𝑑
𝑤) related to these two wells are defined 

in Eq. 17 and 18 and their difference is given in Eq. 19. 
 

𝜙𝑢
𝑤 = −

𝑞

4𝜋
∙ 𝑙𝑛 (

(2𝑅+𝑟𝑤)
2

𝑟𝑤
2 )    (17) 

 

𝜙𝑑
𝑤 = −

𝑞

4𝜋
∙ 𝑙𝑛 (

 𝑟𝑤
2

(2𝑅+𝑟𝑤)
2)    (18) 

 

𝜙𝑑
𝑤 − 𝜙𝑢

𝑤 = −
𝑞

𝜋
∙ 𝑙𝑛 (

𝑟𝑤

2𝑅+𝑟𝑤
)   (19) 

 

Stagnation
points

Sink (-q) Source (+q)

Stagnation
points

Sink (-q) Source (+q)

xs

ys

ys

(a): low flow rate (b): high flow rate

xs

(z-diagram) (z-diagram)

z-diagram z’-diagram

yp Yp
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This difference is combined to 𝜙𝑑
𝑣 − 𝜙𝑢

𝑣 (velocity 
potential induced by a uniform velocity field in the z-
diagram) to obtain the overall velocity field presented in 
Eq. 21. 

 
𝜙𝑑
𝑣 − 𝜙𝑢

𝑣 = −2 ∙ 𝑉0 ∙ 𝑅    (20) 

 

𝜙𝑑 −𝜙𝑢 = 𝜙𝑑
𝑣 −𝜙𝑢

𝑣 + 𝜙𝑑
𝑤 − 𝜙𝑢

𝑤 = −2 ∙ 𝑉0 ∙ 𝑅 −
𝑞

𝜋
∙

𝑙𝑛 (
𝑟𝑤

2𝑅+𝑟𝑤
)       (21) 

 
As rw represents the radius of the gravel pack around 

the wells in the z-diagram, we can easily demonstrate 
that the image of the gravel pack around the sink 
(respectively the source) is a half-gravel pack located 
upstream (respectively downstream) of the cut-off wall 
in the z’-diagram. The radius of gravel packs in the z’-
diagram (Rd) can be deduced from the function g (see 
Eq. 22). 

 

𝑅𝑑 = √(𝑟𝑤 + 𝑅)
2 − 𝑅2    (22) 

 

𝑟𝑤 = −𝑅 + √𝑅
2 + 𝑅𝑑

2      (23) 

 
Otherwise, Darcy’s law in a reactive filter states 

that the flow rate Q entering a filtering gate is 
proportional to its hydraulic conductivity, its surface 
and the hydraulic gradient. Considering that the head 
losses are generated by the porous media and negligible 
for all pipes or draining trenches that can be 
implemented at the entrance and the exit of the PRB, the 
flow rate in the reactive filter is provided in eq. 24. 

 

𝑄 = 𝑞 ∙ 𝐷 = 𝑘𝑓𝑖𝑙𝑡𝑒𝑟 ∙
ℎ𝑢−ℎ𝑑

𝐿𝑓𝑖𝑙𝑡𝑒𝑟
∙ 𝑆𝑓𝑖𝑙𝑡𝑒𝑟  (24) 

 
where kfilter [m/s] represents the hydraulic 

conductivity of the filter, Sfilter [m2] and Lfilter [m] 
respectively represent its cross-surface and length, hu-hd 
[m] represent the hydraulic head loss between the 
entrance and the exit of the filter, Q is the flow rate in the 
filtering gate [m3/s], q is the flow rate per meter of depth 
of the aquifer [m2/s], and D is the thickness of the aquifer 
[m].  

Considering that 𝜙 = 𝑘𝑠𝑜𝑖𝑙 ∙ ℎ + 𝑐𝑠𝑡𝑒 in the z-
diagram, the combination of Eq. 21, 23 and Eq. 24 leads 
to the flow rate in a PRB (Eq. 25).  

𝑞 =
2∙𝑉0∙𝑅∙

𝑘𝑓𝑖𝑙𝑡𝑒𝑟

𝑘𝑠𝑜𝑖𝑙

𝐷∙
𝐿𝑓𝑖𝑙𝑡𝑒𝑟

𝑆𝑓𝑖𝑙𝑡𝑒𝑟
+
1

𝜋
∙
𝑘𝑓𝑖𝑙𝑡𝑒𝑟

𝑘𝑠𝑜𝑖𝑙
∙𝑙𝑛(

√𝑅2+𝑅𝑑
2−𝑅

√𝑅2+𝑅𝑑
2+𝑅

)

  (25) 

 
This equation represents the flow rate per meter 

of aquifer that can enter a filtering gate. For design 
purpose, the geometry of the filter (Sfilter and Lfilter), its 
hydraulic conductivity (kfilter), the radius of the drainage 
elements (Rd) and the width of cut-off walls (R) have to 
be selected according to the site conditions: q (minimum 
flow rate to be treated with respect to the width of the 
plume), V0 (Darcy velocity of the groundwater on the 
site) and ksoil (permeability of the aquifer). 

 

2.3 Residence time as a function of the flow rate 
The first part of this paper was dedicated to the 

hydraulic aspect, which does not constitute the sole 
parameter for the design of a PRB. Indeed, the void 
volume of a filtering gate must be large enough to ensure 
a sufficient residence time. As a consequence, the design 
of a PRB must involve hydraulic and chemical 
considerations to prevent (a) any by-pass of the system, 
and (b) the break-through of the filter. The residence 
time T in a filter is deduced from the total flow rate Q and 
the porosity n of the reactive media, as mentioned in Eq. 
26. 

 

  𝑇 =
𝑛∙𝑆𝑓𝑖𝑙𝑡𝑒𝑟∙𝐿𝑓𝑖𝑙𝑡𝑒𝑟

𝑄
     (26) 

 
Isovalues of residence time can thus be plotted in 

the (Sfilter, Lfilter) plane, as presented on Fig. 5 for the 
following parameters: V0=40m/yr, R=80 m, n=0.4, Rd= 
1.25 m, and kfilter/ksoil =10. All couples of surface and 
length above a hyperbola generate a residence time 
greater than the corresponding isovalue and satisfy the 
chemical criterion. Fig. 5. Also contains a straight line 
corresponding to a specified flow rate qs according to 
Eq. 25. All points under this line represent a higher flow 
rate than the specification (qs). According to this figure, 
two conditions have to be satisfied simultaneously for 
the selection of a filter: (a) the residence time must be 
higher than the target, that is to say that the coordinates 
(Sfilter, Lfilter) must be above a selected hyperbola, and (b) 
the flow rate must be higher than qs, that is to say that 
the coordinates (Sfilter, Lfilter) must be under the straight 
line. Combining the two previous conditions, a region of 
optimal geometry can be plotted as illustrated in grey on 
Fig. 5. 
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Figure 5. Design guidance diagram. 

 
3. Practical application 

Fig. 5 is a useful tool for the design of a PRB but it 
has to be redrawn when modifying the boundary 
conditions. To prevent this redrawing and to facilitate 
the design made by practitioners, Eq. 25 and 26 have 
been rewritten in terms of dimensionless variables. 
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where the dimensionless parameters are: 
 

 𝐴1 =
𝑞∙𝑇

𝑛∙𝐷2
   𝐴2 =
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𝑞
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𝑌𝑝

𝑅
   𝐴4 =

𝑅𝑑

𝑅
 (28) 

 
The system of Eq. 27 has been implemented in a 

guidance diagram provided on Fig. 6. This figure aims 
to design a PRB for all sets of boundary conditions and 
has to be used as follow: 

i. Considering the width of the plume Yp, select a 

cut-off wall length that meets 𝑅 ≥ 2 𝜋⁄ ∙ 𝑌𝑝 , 

ii. On Fig. 6.a, plot a vertical line at the 
corresponding A3 = Yp/R and mark the 
intersection with the curve corresponding to the 
radius of the draining element (A4 = Rd/R), 

iii. Plot an horizontal line from this point and mark 
the intersection with the curve corresponding to 
the ratio A2 = kfilter/ksoil (See Fig. 6.b), 

iv. Plot a vertical line from this point and note the 
value of α corresponding to the intersection with 

the abscissa. α represents the slope of the upper 
boundary of the optimal geometry region in the 
(Sfilter, Lfilter) plan (see Fig. 6.c). 

v. Calculate the ratio A1 = q.T/n.D2 and select the 
corresponding hyperbola on Fig. 6.c. This 
hyperbola constitutes the lowest boundary of the 
optimal geometry region in the (Sfilter, Lfilter) plan. 

vi. Select a filter section and length in the optimal 
region. 

Considering the shape of the curves on Fig. 6.a., the 
design diagram demonstrates that a cut-off wall longer 
than 10 Yp (i.e. Yp /R > 0.2) significantly increases the 
hydraulic efficiency of the system. With this 
assumption, a ratio kfilter/ksoil higher than 10 prevents 
any hydraulic issue. Indeed, the optimal region becomes 
mainly influenced by the residence time (slope of the 
upper boundary higher than 100).  

In summary, the guidance diagram is useful for 
designers to choose the primary dimensions of a new 
PRB. Nevertheless, any designer has to keep in mind that 
the approach proposed here relies on the following 
implicit assumption: the width of the permeable reactive 
zone is extremely small relative to the total width. Hence, 
the reactive zone is essentially treated as a point feature 
and the head distribution in the vicinity of a more 
realistically dimensioned PRB would vary noticeably 
from heads generated from the model proposed here. 
Moreover, the initial hydraulic gradient is supposed 
uniform throughout the model, which can vary from the 
reality. As a consequence of these hypothesis, the model 
should be used for primary design only and to prevent a 
lot of trials and errors in the modelling. 

 

4. Case study 
For illustration purposes, a case study has been 

performed on a specific site characterized by the 
following elements:  

i. a width of plume Yp equal to 10 m, 
ii. an aquifer with a thickness of 3 m, and an 

hydraulic conductivity of 3.10-5 m/s, 
iii. a gradient of 0.004, which leads to a flow rate to 

be treated of 113.5 m3/y (40 m3/y per meter of 
depth). 

The contamination is composed of heavy metals 
(copper and zinc) and the treatment is based on the 
precipitation of metal hydroxides performed through an 
increase of pH. The targeted pH depends on the valence 
of the metals: a pH of about 10 allows the precipitation 
of hydroxides from divalent metal ions (Zn, Mn, Cu, Pb, 
Ni, Co and Cd), while a pH of around 6-7 is adapted to 
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trivalent ions (Fe, Al, Cr). In our case, magnesium oxide 
has been selected as the pH at the equilibrium with pure 
magnesium oxide is around 10, which is particularly 
interesting for the precipitation of bivalent ions. 

Laboratory tests leaded to a minimum residence time of 
120 h and the reactive media is characterized by a 
permeability of 18.10-5 m/s and a porosity of 0.3. 

 

 
Figure 6. Guidance diagram for the design of funnel-and-gate permeable reactive barriers. 

 
These characteristics lead to dimensionless 

parameters A1 and A2 respectively equal to 0.2 and 6. To 
evaluate the parameters A3 and A4, a length of 20 m has 
been chosen for the cut-off wall (2R). A higher value 
could be considered, but cut-off walls are expensive and 

practitioners try to minimize their length. A lower value 
could also be considered, but the safety factor decreases 

as R approaches 2 𝜋⁄ ∙ 𝑌𝑝. Considering a typical draining 

trench with a radius of 1 m, the construction on the 
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guidance diagram leads to an optimal region above the 
black bold lines on Fig.6.c. (α = 20 and A1 = 0.2). 

The final dimension of the filter is then determined 
by practical consideration. For instance, shortest filters 
will be preferred to facilitate their manipulation. 
Limiting the length of the filter to 1 m, the minimum 
surface to warranty a sufficient residence time would be 
of 0.2 m2, hence a radius of 0.5 m. 

 

5. Conclusion 
Based on the Schwarz-Christoffel transformation, 

we developed an analytical solution of the flow rate in a 
PRB. This study demonstrated that the cut-off width has 
the most important impact on the capture zone and it 
leads to a design methodology for the reactive cell. 
According to this methodology, the section and length of 
a reactive cell are selected to ensure (a) a minimum flow 
rate, and (b) a minimum residence time in the porous 
media. The first condition is essential to capture the 
entire plume, while the second is mandatory to treat 
efficiently the contaminated groundwater. To meet these 
conditions, the design of a funnel-and-gate PRB 
comprises two steps: (a) a minimum cut-off width is 
selected to ensure a sufficient capture width, and (b) the 
filter’s dimensions are selected on figure taking into 
account hydraulic and chemical constraints (residence 
time). 
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