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Abstract– China’s fast pace industrialization and growing 
population has led to several accidental surface water 
pollution events in the last decades. This has severely affected 
the safety of large populations downstream whom are 
dependent of these waters for drinking. In other countries such 
as the USA, several accidental pollution events have forced 
these to develop early warning systems (EWSs) for the 
protection of their drinking water sources. The government of 
China, in its 11th Five Year plan, after the 2005 Songhua River 
incident, has pushed for similar actions. Despite recent 
government efforts, there are still many weaknesses and gaps 
in EWS in China such as the lack of pollution monitoring and 
advanced mathematical models to predict and forecast 
pollution events. The application of existing physical models for 
water quality prediction in China can be challenging due to 
information availability issues. Data Driven Models (DDMs) 
such as Artificial Neural Networks (ANNs) have acquired 
recent attention as an alternative to physical models which 
require large amounts of data, do not take into account 
nonlinear hydrological properties, are computationally 
demanding and not always flexible.  
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1. Introduction
China’s fast pace industrialization and growing

population has led to several accidental pollution events. In 
particular, surface water pollution accidents have raised 
significant concern in China. It is even said that 38% of 
aquatic pollution events in China from 1985 to 2005 came 
from traffic accidents (Zhang, et al., 2011). This is of great 
concern for populations living downstream and using 
contaminated surface water as drinking sources. This has led 
the Chinese government to take severe actions for the 
implementation of prevention and control measures. 
Implementing EWSs for the protection of drinking water 
source has been a key priority in the last decade. Nonetheless, 
severe water pollution disasters, especially accidental spills, 
have still happened in the past years such as: 

 The blast of Jihua petroleum factory upstream of the
Songhua River in Jilin Province, in November 2005.
The blast caused a leak of toxic materials into the 
Songhua River which is the sole source of drinkable 
water of several major cities in Northeast China and 
forced local governments to exercise a regional 
emergency plan (Hu, 2009). 
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 The cadmium spill which contaminated over 100 km of 
the Longjiang River in southwestern China’s Guangxi 
region, in January 2012. The spill prompted residents 
of the river’s downstream Liuzhou, a city of 3.2 
million to stock up on bottled water. The area 
upstream of the Longjiang River has seen repeated 
spills from smelters and miners operating in this 
area and has been repeatedly singled out for 
inadequate controls on heavy metal pollution (Web-
1, 2012). 

There still appears to be a need for water utilities in 
China to develop and implement advanced EWS. This would 
allow water utilities to act accordingly and protect its intake 
in cases of emergency, thus ensuring continuous and safe 
drinking water supply to the population. The following article 
explains all the components required for a thorough 
advanced EWS, explores the achievements in the 
international community, and reviews the state of EWSs in 
China. Finally, the use of water contamination prediction and 
forecasting models are introduced as an important 
component to EWSs.  

 

2. Early Warning System Components 
  Public drinking water supplies using surface source 

waters such as rivers are vulnerable to a variety of 
disruptions in water quality as a result of accidental, 
intentional, or natural contamination of supplies. Protecting 
the water source is the first step needed to ensure a drinking 
water plant does the necessary treatment steps and supplies 
safe potable water to its downstream population. Most 
drinking water Treatment plants do practice forms of 
monitoring their source water.  However, the data 
transmitted by monitors are often limited in the number of 
parameters measured, and are collected at a frequency that is 
not conducive to detecting sudden changes in water quality 
(e.g., weekly, monthly, or quarterly sampling) (Grayman, 
2001). In order to overcome these limitations, source water 
EWSs are designed to improve on the information available 

and to utilize these and other information in an integrated 
approach for identifying and responding to contamination 
before it enters the drinking water supply (Grayman, 2001). 
EWSs will therefore help to give more information and time 
to the plant operators on how to deal with a possible 
contamination event, reduce additional treatment costs 
related to pollution control and ultimately improve drinking 
water safety and continuous supply to the population.  

When referring to an EWS, very often, only the 
monitoring systems for pollution detection are taken into 
account. In reality, an EWS includes a wide range of 
components that work together to prevent contaminants 
from entering a water supply. These components displayed in 
Fig. 1 include the following (Grayman, 2001): 

 A mechanism for detecting the likely presence of a 
contaminant in the source water 

 A means of confirming the presence of the 
contamination, determining the nature of the 
contamination event and predicting when (i.e. reaction 
time) the contamination will affect the source water at 
the intake sites and the intensity (concentration) at the 
intake 

 An institutional framework generally composed of a 
centralized unit that coordinates the efforts associated 
with managing the contamination event 

 Communication linkages for transferring information 
related to the contamination 

 Various mechanisms for responding to the presence of 
contamination in the source water in order to mitigate 
its impact on water users. 

For the purpose of this paper, a focus on an EWS’s 
detection, confirmation and characterization of 
contamination components will be done. 

 
2.1. Detection Mechanisms 

The first step of an EWS is to detect the possible 
presence of a contaminant in surface water being used as 

Fig. 1. River Pollution Simulation Tool (adapted) 
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drinking water source. The primary objective of the detection 
phase is to raise a warning, in a very timely manner, that the 
source water has been contaminated (Grayman, 2001).  

There are three general accidental pollutant event 
detection mechanisms (Grayman, 2001): 

1. Monitoring. Conventional physico-chemical 
monitoring instruments are used to measure specific 
compounds or values as indicator parameters. Other 
type of instruments are biomonitors which measure the 
stresses placed on living organisms by contaminants or 
other changes in the environment. 

2. Public Reporting. This mechanism is most effective 
with large contamination events such as ones resulting 
in fishkills, involving contaminants that are readily 
detectable by sight or odor, and events in more heavily 
populated areas. In most cases, such reports are made 
to the police or fire emergency phone numbers by the 
public. 

3. Self-Reporting. The most effective mechanism for 
identifying the presence of a contaminant should be 
self-reporting by the discharger of the contaminant. If 
the discharger is aware of the contamination event then 
this method can result in a report that is the most 
timely and exact in terms of location, type, and extent of 
the contaminant. In most developed countries, laws 
require self-reporting of any significant spill. However, 
the compliance with such laws varies significantly 
around the world. In many cases in China, dischargers 
will not report spills in order to avoid fines if they feel 
they can get away with it. 

In China, public reporting and especially self-reporting 
are to date still challenging. Hence, monitoring stations play a 
bigger role as the main detection mechanism.  
 
2.2. Confirmation and Characterization of Contamination 
Mechanisms 

Following the detection of a contamination event, the 
next step in the EWS process is confirmation of the event. In 
addition, development of further data on the event is needed 
for an effective response. Confirmation involves additional 
sampling and testing to make sure that the initial detection 
was indeed correct. Incorrect detection leads to false 
positives associated with monitoring instrumentation or 
incorrect public reports. Some advanced monitoring stations 
automatically take samples at fixed intervals and store these 
samples for a fixed period (e.g., 24 h). Other stations are 
designed to take samples automatically when a monitor 
detects an unusual event. In either case, the samples can then 
be analyzed using standard tests to confirm and characterize 
the nature of the contaminant involving the following actions 
(Grayman, 2001): 

- Determine the specific contaminant(s) involved. 
- Determine the spatial and temporal variation in 

concentration in the source water. 

- Identify the likely source of the contaminant (if 
unknown). 

- Assess the dynamic behaviour of the contaminant in the 
water body (mixing and decay behaviour). 

- Predict the movement of the contaminant within the 
water body so that the time that the leading and trailing 
edges of the contaminant plume reach water intakes 
and also the likely concentration at the intake can be 
predicted. 

- Determine impacts on the waterway itself (e.g., fish 
kills). 

Characterization of the contaminant is generally 
accomplished through collection of samples either in the field, 
laboratory monitoring or in-stream tracking of the event. For 
more advanced characterization mathematical models can be 
used to assess and predict the movement of a spill in a water 
body (Grayman, 2001). This would allow for the drinking 
water treatment plant’s operators to know how much time 
they can have to react before the contaminant reaches the 
intake and when an emergency shutdown would have to take 
place. This paper is concerned of mathematical models used 
to support EWSs by predicting and forecasting the movement 
of accidental contaminations. 
 

3. International Experience 
Most International EWSs have been developed after 

responding to serious accidental pollution events such as the 
1986 Sandoz spill on the Rhine River, the 1976 carbon 
tetrachloride spill on the Ohio River, the 1984 phenol spill on 
the River Dee, The oil spills of Torrey Canyon in UK (1967), 
and Exxon Valdez in Alaska, USA (1989) (Zou & Li, 2009).  
However, advanced EWSs are defined as those employing 
state-of-the art monitoring equipment, modelling and 
communications as an integrated system providing warning 
of contaminants in the source water. Based on this definition, 
there are only a relatively few advanced EWSs around the 
world (Grayman, 2001). A few of these advanced EWSs are 
mentioned. 

In the USA, the Ohio River Valley Water Sanitation 
System (ORSANCO) detects spills and contaminants by an 
organic detection system. This EWS performs mathematical 
modelling of the movement of the spill in the river, collecting 
field data, and disseminating information to downstream 
water utilities (Grayman, 2001) . In the UK, the River Dee is a 
major water source for northern wales and England. Its EWS 
is composed of on-line water quality monitoring stations and 
gaugin stations. The stations operate unattended (except for 
routine maintenance several times per week) and 
information is provided through telephone lines (Grayman, 
2001). In Paris, France, more than 95 percent of the raw 
water originates from surface water sources, the Seine River. 
After several accidents, an EWS has been installed composed 
of a series of monitoring stations composed of monitors, 
automatic samplers, forecast mathematical models, and 
inventories of toxic chemicals stored upstream of their 
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intakes (Grayman, 2001). In Japan, the Yodo River EWS 
notifies immediately water utilities when a contaminant is 
found. Oil spills form the majority of the reported 
contaminant events though others include pesticides, phenol 
and a wide range of chemicals. Monitoring facilities include 
several unique biomonitoring stations, advanced TOC and UV 
monitors, gas chromatographs, standard water quality 
monitors, and odor detector units used by treatment plant 
operators (Grayman, 2001). 

International advanced EWSs, have not only invested in 
state-of-art monitoring detection technologies, but have 
implemented forecasting mathematical models to 
characterize and confirm the behaviour of possible accidental 
events. These methods allow water utilities to be prepared 
and take efficient preventative actions. 
 

4. State of Early Warning Systems in China 
Along with China’s rapid industrialization and increase 

in population, the country is at a stage of frequent pollution 
accidents. Traditionally, Chinese practice in water emergency 
management has been mainly focusing on mitigation after an 
incident. In fact prevention before an incident is more 
important than mitigation after an incident. China’s EWSs for 
sudden water pollution accidents began to be explored only 
after the Songhua River toxic spill in 2005. The Government 
of China took some immediate steps to strengthen national 
environmental emergency prevention and response for water 
pollution incidents (Zou & Li, 2009). For that reason, in 2006, 
the 11th Five Year plan initiated a great emphasis on 
environmental protection through pollution control and 
prevention. Presently, at the beginning of the 12th Five Year 
plan, the Chinese government is still prioritizing the 
construction of water conservation and disaster prevention 
and mitigation system by strengthening forecasting, 
prevention and emergency response to extreme weather, 
earthquakes and natural disasters (PRC, 2011). 

For instance, the Chinese Government has proposed 
numerous protocols and measuring systems for aquatic 
environment management. In the seven major river basins, 
more than 100 monitoring stations have been built (Web-2). 
However, the research data and measuring equipment are 
still insufficient in detecting unexpected accidental pollution 
events (Zhang, et al., 2011). It is indeed difficult to confirm 
abrupt accidents, since no system in these stations is capable 
of alarming the sudden change of water quality, especially in 
the case of combined pollution. Some EWSs for source water 
quality have been established in China such as Raw Water 
EWS of Tianjin Water Supply Co. and water quality warning 
and forecasting system in Wuhan Section of Han River. 
Compared to foreign practice, construction on 
communication system of China’s EWS is as advanced as the 
outside. For example Tianjin Water Supply Co. implemented 
GPRS communication system. But there is no EWS directly for 
accidental water pollution incidents because of no 
appropriate monitoring system available (Zou & Li, 2009). 

Despite recent government efforts, there are still many 
weaknesses and gaps in EWS in China (Zou & Li, 2009). 
 

In recent years, the Chinese Government has promoted 
international cooperation in the areas of pollution prevention 
and control. In the area of drinking water source protection, a 
recent large cooperation project has been implemented, the 
EU-China River basin Management Programme. A study on 
the Yellow River Basin was done in order to test integrated 
water resources protection practices and systems for 
prevention, reduction and control of water pollution (Web-3). 
The EU China River Basin Management Program carried out 
the Development of Early Warning Emergency Response 
(EWER) forecasting system for pollution incidents in the 
middle reaches of the Yellow River Basin. In order to be able 
to conduct the efficient study a group of experts including 
both international and domestic experts to participate in the 
project. This project supports tools to manage wastewater 
discharges to the river and strengthen the EWS for pollution 
incidents. The tools used, namely a physical model, MIKE 11 
by DHI can be used to assess the environmental carrying 
capacity of the river by simulation of the impact of pollution 
loads from urban and industrial wastewater discharges (Sene 
& Darch). The model may also be used to predict the time and 
downstream concentrations of pollutants, which are 
discharged to the river by accident, and thereby make it 
possible to warn downstream users (Web-3). 
 

5. Focus on Modelling in Early Warning Systems 
Mathematical models are used after pollution detection, 

in order to characterize the pollution and especially to 
understand the contamination event movement in the river. 
One major objective of these models is to determine with 
sufficient accuracy the transfer time needed for pollution to 
move from its current location and reach the raw water 
intake. One second objective may be to characterize the 
pollution plume when it reaches the raw water intake in 
order to determine whether or not the intake should be 
closed and if yes, how long the raw water intake should be 
closed until the plume has passed the intake. 

Surface water modeling, a.k.a hydrological modelling, 
encompasses a wide range of methods that can be used to 
predict the hydraulics and water quality in an aquatic 
environment (Grayman, 2001). For more than 100 years, 
hydrological equations solving hydraulics and water quality 
predictions have been used. Since the 1950s, computerized 
methods have been developed and taken hydrological 
simulations to another step (Rosbjerg & Madsen, 2005). In 
the context of EWSs, the specific type of modeling of interest 
involves the modeling of transient water quality conditions 
associated with spills or other contamination events and 
their potential impact on drinking water intakes. This class of 
models is frequently referred to as “spill models” (Grayman, 
2001). Throughout the literature, many hydrological models, 
whether a public tool or licensed tool, can be used to model 
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accidental spills and characterize its behaviour. There are 
many ways of classifying these hydrological models. In this 
paper, we choose to divide them into two categories:  
 Physically-based “white-box” models that calculate and 

integrate all the physico-chemical mechanisms occurring 
in the river (e.g. sedimentation) to predict pollutant fate 
(Hao, 2006). 

 Empirically-based or data driven “black-box” models 
that aim at predicting pollutant fate using a purely 
numeric (e.g. statistical methods such as regression) 
approach and without any detailed understanding of 
physico-chemical mechanisms. 

 
5.1. Physically-Based Models 

Physically-based models build upon physical 
“determinist” laws (e.g. hydrodynamics, sedimentation 
coefficient…) to describe the river flow and pollutants fate. 
These models allow users to characterize and confirm 
possible accidental pollutant events by predicting the 
pollutants behaviour and time of travel in the river. In this 
way, one can precisely predict how a pollutant in a river will 
move from any point, i.e. model the pollutant’s fate. 

There are three basic components of these models: 
 A flow module, describing the movement of the water 
 A water quality transport module, describing the 

processes by which the contaminant concentration 
changes due to the hydrodynamic forces 

 A fate module describing the impacts of physical, 
chemical, and biological processes on the form and 
concentration of the contaminant.  

 
MIKE 11 by DHI 

The MIKE 11 is a popular physically based River 
modelling system. It is a one-dimensional (1D) model for 
rivers, canals, floodplains, reservoirs and structures. Some 
areas of application include urban networks, water quality 
modelling, sediment transport and real time flood 
forecasting. It can be used for simple 1D river modelling 
(Landrein, 2011). The MIKE 11 contains different modules 
such as the rainfall-runoff (NAM) module, Hydrodynamic 
module (HD) and advection-dispersion (AD) module.  

Overall, MIKE 11 model provides accurate hydraulic 
description in rivers/channels which are one-dimensional 
flows. It is rapid and has less computational points relative to 
2D model, while being easy to analyze and extract results 
(Landrein, 2011).This model is suitable when detailed flow 
patterns and depths are not important, when there are many 
complex structures and where short simulation time is 
important (i.e. real time forecasting river basin models) 
(Landrein, 2011). 
 
5.2. Data Driven Models 

Data Driven models (DDMs) rely on equations derived 
experimentally using available data and are usually site 
specific (Wai, 2007). The main part of data-driven modelling 

is, in fact, learning which incorporates the so-far unknown 
mappings (or dependencies) between a system’s inputs and 
its outputs from the available data. By data we understand 
the known samples that are combinations of inputs and 
corresponding outputs. As such, a dependence (“model”) is 
discovered (induced), which can be used to predict the future 
system’s outputs from the known input values (Solomatine & 
Ostfeld, 2008).The most frequent types of DDMs used have 
been statistical, fuzzy logic and Artificial Neural Networks 
(ANNs). ANNs have acquires recent attention for being 
flexible and overcoming difficulties associated to the 
aforementioned physical models. 

The advantages of data-driven models over the 
physically based models are that they are less data and 
computationally demanding, therefore feasible to use for 
real-time forecasting. Furthermore, such data-driven models 
are of particular importance to developing countries with 
limited hydro-meteorological data (Pang et al., 2007). This is 
a very important fact for the Chinese situation, where is 
difficult to obtain data and often no data is even available due 
to lack of monitoring. 
 
 Artificial Neural Networks (ANN) 

For many years, practitioners in water resources have 
primarily used simple linear regression or time series models 
to obtain approximations of the relationships between 
variables. One reason for this is that the rules governing 
sophisticated nonlinear statistical models have generally 
been considered to be too restrictive and make it too difficult 
to utilise them for real-life applications (Maier & Dandy, 
2000). For this reason, practitioners in water resources have 
had the tendency to move away from traditional statistical 
approaches and have explored other DDM methods such as 
Fuzzy rule-rule base systems (FRBS) and Artificial Neural 
Networks (ANNS). 

Fuzzy and ANN modelling methods are similar where 
both of them create a quantitative inner chain of links 
between input and output quantities without 
explaining/justifying the physical reason of those links. They 
mimic, in fact, the intuitive human way of relating causes with 
their effects (Alvisi, Mascellani, Franchini, & Bardossy, 2006). 
It has been shown that the models based on the fuzzy logic 
approaches may fail unexpectedly in forecasting, in the sense 
that, some input combinations are not recognised by the rule 
system and thus no forecasting is performed. This problem 
does not occur in the ANN approach (Alvisi, Mascellani, 
Franchini, & Bardossy, 2006). 

Over the last 15 years or so, the use of ANNs for water 
quantity and quality characterization has become a well-
established research area where their computing abilities 
have been proven in the fields of prediction and estimation, 
pattern recognition, and optimization (Adeli, 2001) (Maier et 
al., 2010). They are powerful pattern recognizers and 
classifiers. They operate adaptive tools that learn significant 
structures in data and allow mimicking those patterns, in 



18 

 

 

order to forecast data without the need to formalize how 
these patterns work and what inner mechanisms/formula are 
involved.  

Numerous applications of predictive ANN models to 
water resources modelling and time-series analysis have 
been reported for forecasting of water quality and quantity 
parameters (May et al., 2009). ANN models are developed 
using available data and are not based on underlying physical 
processes explicitly (Maie et al., 2010). This is particularly 
convenient for cases of modelling rivers or river basins 
where complex and multiple phenomena are involved. In 
many cases the best available physical model does not fully 
describe a system, owing to some unknown process, which 
results in a structures error in model estimates (May et al. 
2009). For examples, the existing nonlinear hydrological 
relationships, which are so important when building flow 
forecasting models for river basin management, are 
effectively captured by ANNs. 
 

6. Conclusion 
An advanced EWS must include detection, 

characterization and confirmation components. In order to 
achieve this, monitoring and modelling are needed. In China, 
after the 2005 Songhua River accident, there was a lot of 
emphasis put by the government to develop EWS.  However, 
there is a lack of advanced EWS directly used for accidental 
water pollution incidents because of inappropriate 
monitoring systems. Without appropriate monitoring 
systems, modelling becomes a challenge.  

Water quality prediction models can be generally 
classified into physical models and Data-Driven models. 
Physical models for water contamination prediction and 
forecasting are very popular and useful when all the 
information needed is available. In the case of China where 
data availability is a big problem, Data-Driven models, such 
as ANNs, can overcome this issue with its flexibility which 
allows it to predict and forecast with limited available data. 

Meanwhile, China is still facing pollution accidents which 
put at stake populations downstream. There still is a need for 
water utilities in China to implement advanced EWS, in order 
to act accordingly and protect its intake in cases of 
emergency, thus ensuring continuous and safe drinking water 
supply to the population. 
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